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Abstract. This paper is concerned with the state-constrained optimal control of the three-
dimensional thermistor problem, a fully quasilinear coupled system of a parabolic and elliptic PDE
with mixed boundary conditions. This system models the heating of a conducting material by means
of direct current. Local existence, uniqueness and continuity for the state system are derived by
employing maximal parabolic regularity in the fundamental theorem of Prüss. Global solutions and
controls admitting such are addressed and existence of optimal controls is shown if the temperature
gradient is under control. This work is the first of two papers on the three-dimensional thermistor
problem.
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1. Introduction. In this paper, we consider the state-constrained optimal con-
trol of the three-dimensional thermistor problem. In detail the optimal control prob-
lem under consideration looks as follows:

min
1

2
‖θ(T1)−θd‖2L2(E)+

γ

s
‖∇θ‖sLs(T0,T1;Lq(Ω))+

β

2

∫
ΣN

(∂tu)2+|u|p dω dt

s.t. (1.1)–(1.6)

and θ(x, t) ≤ θmax(x, t) a.e. in Ω× (T0, T1),

0 ≤ u(x, t) ≤ umax(x, t) a.e. on ΓN × (T0, T1)


(P)

where (1.1)–(1.6) refer to the following coupled PDE system consisting of the insta-
tionary nonlinear heat equation and the quasi-static potential equation, which is also
known as thermistor problem:

∂tθ − div(η(θ)κ∇θ) = (σ(θ)ε∇ϕ) · ∇ϕ in Q := Ω× (T0, T1) (1.1)

ν · κ∇θ + αθ = αθl on Σ := ∂Ω× (T0, T1) (1.2)

θ(T0) = θ0 in Ω (1.3)

−div(σ(θ)ε∇ϕ) = 0 in Q (1.4)

ν · σ(θ)ε∇ϕ = u on ΣN := ΓN × (T0, T1) (1.5)

ϕ = 0 on ΣD := ΓD × (T0, T1). (1.6)

Here θ is the temperature in a conducting material covered by the three dimensional
domain Ω, while ϕ refers to the electric potential. The boundary of Ω is denoted by
∂Ω with the unit normal ν facing outward of Ω in almost every boundary point (w.r.t.
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the boundary measure ω). In addition, for the boundary we have ΓD ∪̇ ΓN = ∂Ω,
where ΓD is closed within ∂Ω. The functions η(·)κ and σ(·)ε represent heat- and
electric conductivity. While κ and ε are given, prescribed functions, η and σ are
allowed to depend on the temperature θ. Moreover, α is the heat transfer coefficient
and θl and θ0 are given boundary– and initial data, respectively. Finally, u stands for
a current which is induced via the boundary part ΓN and is to be controlled. The
bounds in the optimization problem (P) as well as the desired temperature θd are
given functions and β is the usual Tikhonov regularization parameter. The precise
assumptions on the data in (P) and (1.1)–(1.6) will be specified in §2. In all what
follows, the system (1.1)–(1.6) is frequently also called state system.

The PDE system (1.1)–(1.6) models the heating of a conducting material by
means of a direct current, described by u, induced on the part ΓN of the boundary,
which is done for some time T1 − T0. At the grounding ΓD, homogeneous Dirichlet
boundary conditions are given, i.e., the potential is zero, inducing electron flow. Note
that, usually, u will be zero on a subset ΓN0

of ΓN , which corresponds to having
insulation at this part of the boundary. We emphasize that the different boundary
conditions are essential for a realistic modeling of the process. The objective of (P) is
to adjust the induced current u to minimize the L2-distance between the desired and
the resulting temperature at end time T1 on the set E ⊆ Ω, the latter representing the
area of the material in which one is interested – realized in the objective functional
by the first term. The other terms are present to minimize thermal stresses (second
term) and to ensure a certain smoothness of the controls (third term), whose influence
to the objective functional, however, may be controlled by the weights γ and β. The
actual form of these terms and the size of the integrability orders are motivated by
functional-analytic considerations, see §4. Moreover, the optimization is subject to
pointwise control and state constraints. The control constraints reflect a maximum
heating power, while the state constraints limit the temperature evolution to prevent
possible damage, e.g. by melting of the material. Similarly to the mixed boundary
conditions, the inequality constraints in (P) are essential for a realistic model as
demonstrated by the numerical example in a companion paper [40]. Problem (P)
is relevant in various applications, such as for instance the heat treatment of steel
by means of an electric current. The numerical example mentioned deals with an
application of this type.

The state system (1.1)–(1.6) exhibits some non-standard features, in particular
due to the quasilinear coupling of the parabolic and the elliptic PDE, the mixed bound-
ary conditions in (1.5)–(1.6), and the inhomogeneity in the heat equation (1.1) as well
as the temperature-dependent heat conduction coefficients. Besides the quasilinear
state system, the pointwise state constraints on the temperature represent another
challenging feature of the optimal control problem under consideration. The Lagrange
multipliers associated with constraints of this kind only provide poor regularity in
general, which especially complicates the analysis of the adjoint equation.

We briefly describe the genuine aspects of our work. First of all, the discussion of
the quasilinear state system alone requires sophisticated up-to-date tools from max-
imal elliptic and parabolic regularity theory. The corresponding maximal regularity
results were established only recently, see e.g. [6, 26, 29] for the parabolic case and [34,
Appendix], [13] for the elliptic one. Our key ingredient for the proof of local-in-time
existence is a general result of Prüss on quasilinear parabolic equations [43]. To verify
the assumptions required for the application of Prüss’ result, we heavily rely on an
isomorphism property of the elliptic differential operators in both equations of the
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state system. Assuming this isomorphism property only for the case of pure diffusion
coefficients κ and ε in the differential operators, see Assumption 3.4 below, we show
that the nonlinear differential operators involving η(θ) and σ(θ) then also enjoy it, by
a technique developed in [34]. However, this analysis only guarantees the local-in-time
existence, and the counterexample in [5] involving a blow-up criterion for a similar
model of the thermistor system demonstrates that one can, in general, not expect
global-in-time solutions. Nevertheless, based on recent results on non-autonomous
parabolic equations [41], we prove that there are control functions that admit global-
in-time solutions. Let us remark that we show that control functions which admit a
global solution to the PDE system form an open set in a companion paper [40]. Con-
cerning the existence of global minimizers for (P), we benefit from the pointwise state
constraints and the second addend in the objective functional involving the gradient
of the temperature. Both prevent a blow-up of the temperature and its gradient and
allow to restrict the discussion of the optimization problem to control functions that
admit a global-in-time solution of the state system. This approach is inspired by [3],
where a similar technique was used to establish the existence of optimal controls. We
further introduce the control space fitting the third term in the objective functional
in (P) and establish a compactness result for this space, which is needed to pass to
the limit in the nonlinear state system (1.1)–(1.6).

Let us put our work into perspective. Up to the authors’ best knowledge, there
are only few contributions dealing with the optimal control of the thermistor prob-
lem. We refer to [37, 11, 32], where two-dimensional problems are discussed. In [37],
a completely parabolic problem is discussed, while [32] considers the purely elliptic
counterpart to (1.1)–(1.6). In [11, 4], the authors investigate a parabolic-elliptic sys-
tem similar to (1.1)–(1.6), assuming a particular structure of the controls. In contrast
to [37, 32], mixed boundary conditions are considered in [11]. However, all these con-
tributions do not consider pointwise state constraints and non-smooth data. Thus, (P)
differs significantly from the problems considered in the aforementioned papers. In a
previous paper [30], two of the authors investigated the two-dimensional counterpart
of (P). This contribution also accounts for mixed boundary conditions, non-smooth
data, and pointwise state constraints. However, the analysis in [30] substantially
differs from the three dimensional case considered here. First of all, in two spatial
dimensions, the isomorphism-property of the elliptic operators mentioned above di-
rectly follows from the classical paper [23]. Moreover, the heat conduction coefficient
in (1.1) is assumed not to depend on the temperature in [30]. Both features allow to
derive a global existence result for a suitable class of control functions. Hence, main
aspects of the present work do not appear in the two-dimensional setting. Let us
finally take a broader look on state-constrained optimal control problems governed by
PDEs. Compared to semilinear state-constrained optimal control problems, the liter-
ature concerning optimal control problems subject to quasilinear PDEs and pointwise
state constraints is rather scarce. We exemplarily refer to [9, 8], where elliptic prob-
lems are studied. The vast majority of papers in this field deals with problems that
possess a well defined control-to-state operator. By contrast, as indicated above, the
state-system (1.1)–(1.6) in general just admits local-in-time solutions, which requires
a sophisticated treatment of the optimal control problem under consideration.

The paper is organized as follows: We set the stage with notations and assump-
tions in §2 and discuss the state-system in §3. More precisely, §3.1 collects preliminary
results, also interesting for their own sake, while §3.2 is devoted to the actual proof of
existence and uniqueness of local-in-time solutions. We then proceed with the optimal
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control problem in §4, give sufficient conditions for sets of controls to be closed within
the sets of all controls which admit global solutions in time, and finally show that
optimal solutions to (P) exist.

2. Notations and general assumptions. We introduce some notation and the
relevant function spaces. All function spaces under our consideration are real ones.
Let, for now, Ω be a domain in R3. We give precise geometric specifications for Ω in
§2.1 below.

Let us fix some notations: The underlying time interval is called J = (T0, T1)
with T0 < T1. The boundary measure for the domain Ω is called ω. Generally, given
an integrability order q ∈ (1,∞), we denote the conjugated of q by q′, i.e., it always
holds 1/q + 1/q′ = 1.

Definition 2.1. For q ∈ (1,∞), let W 1,q(Ω) denote the usual Sobolev space on
Ω. If Ξ ⊂ ∂Ω is a closed part of the boundary ∂Ω, we set W 1,q

Ξ (Ω) to be the closure
of the set

{
ψ|Ω : ψ ∈ C∞0 (R3), supp ψ ∩ Ξ = ∅

}
with respect to the W 1,q-norm.

The dual space of W 1,q′

Ξ (Ω) is denoted by W−1,q
Ξ (Ω); in particular, we write

W−1,q
∅ (Ω) for the dual of W 1,q′(Ω) (see Remark 2.3 below regarding consistency).

The Hölder spaces of order δ on Ω or order % on Q are denoted by Cδ(Ω) and C%(Q),
respectively (note here that Hölder continuous functions on Ω or Q, respectively,
possess an unique uniformly continuous extension to the closure of the domain, such
that we will mostly use Cδ(Ω) and C%(Q) to emphasize on this).

We will usually abbreviate the function spaces on Ω by leaving out the Ω, e.g. we
write W 1,q

Ξ instead of W 1,q
Ξ (Ω) or Lp instead of Lp(Ω). Lebesgue spaces on subsets

of ∂Ω are always to be considered with respect to the boundary measure ω, but
we abbreviate Lp(∂Ω, ω) by Lp(∂Ω) and do so analogously for any ω-measurable
subset of the boundary. The norm in a Banach space X will be always indicated by
‖ · ‖X . For two Banach spaces X and Y , we denote the space of linear, bounded
operators from X into Y by L(X;Y ). The symbol LH(X;Y ) stands for the set of
linear homeomorphisms between X and Y . If X,Y are Banach spaces which form
an interpolation couple, then we denote by (X,Y )τ,r the real interpolation space,
see [47]. We use M3 for the set of real, symmetric 3 × 3-matrices. In the sequel,
a linear, continuous injection from X to Y is called an embedding, abbreviated by
X ↪→ Y . For Lipschitz continuous functions f , we denote the Lipschitz constants by
Lf , while for bounded functions g we denote their bound byMg (both over appropriate
sets, if necessary). Finally, c denotes a generic positive constant.

2.1. Geometric setting for Ω and ΓD. In all what follows, the symbol Ω
stands for a bounded Lipschitz domain in R3 in the sense of [39, Ch. 1.1.9]; cf. [28]
for the boundary measure ω on such a domain.

Remark 2.2. The thus defined notion is different from strong Lipschitz domain,
which is more restrictive and in fact identical with uniform cone domain, see again [39,
Ch. 1.1.9]).

A Lipschitz domain is formed e.g. by the topologically regularized union of two
crossing beams (see [26, Ch. 7]), which is not a strong Lipschitz domain. Moreover,
the interior of any three-dimensional connected polyhedron is a Lipschitz domain, if
the polyhedron is, simultaneously, a 3-manifold with boundary, cf. [25, Thm. 3.10].
However, a ball minus half of the equatorial plate is not a Lipschitz domain, and a
chisel, where the blade edge is bent onto the disc, is also not.

Remark 2.3. The Lipschitz property of Ω implies the existence of a linear,
continuous extension operator E : W 1,q(Ω) → W 1,q(R3) (see [19, p.165]). This has
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the following consequences:

• Since any element from W 1,q(R3) may be approximated by smooth functions
in the W 1,q-norm, any element from W 1,q(Ω) may be approximated by re-
strictions of smooth functions in the W 1,q(Ω)-norm. This tells us that the
definitions of W 1,q(Ω) and W 1,q

Ξ (Ω) are consistent in case of Ξ = ∅, i.e., one

has W 1,q(Ω) = W 1,q
∅ (Ω). See also the detailed discussion in [22, Ch. 1.3.2].

• It is not hard to see that E also provides a continuous extension operator
E : Cδ(Ω)→ Cδ(R3) and E : Lp(Ω)→ Lp(R3), where δ ∈ (0, 1), p ∈ [1,∞].

• Finally, the existence of the extension operator E provides the usual Sobolev
embeddings W 1,q(Ω) ↪→ Lp(Ω). In particular, this yields, by duality, the
embedding Lq/2(Ω) ↪→W−1,q

∅ (Ω) if q exceeds the space dimension three.

Next we define the geometric setting for the domains Ω and the Dirichlet boundary
part. For this, we denote by K the open unit cube in Rn, centered at 0 ∈ Rn, by K−
the lower half cube K ∩ {x: xn < 0}, by ΣK = K ∩ {x: xn = 0} the upper plate of
K− and by Σ0

K the left half of Σ, i.e. Σ0
K = ΣK ∩ {x: xn−1 ≤ 0}.

Definition 2.4. Let Ξ ⊂ ∂Ω be closed within ∂Ω.

(i) We say that Ω∪Ξ is regular (in the sense of Gröger), if for any point x ∈ ∂Ω
there is an open neighborhood Ux of x, a number ax > 0 and a bi-Lipschitz mapping φx

from Ux onto axK such that φx(x) = 0 ∈ R3, and we have either φx

(
(Ω ∪ Ξ) ∩ Ux

)
=

axK− or ax(K− ∪ ΣK) or ax(K− ∪ Σ0
K).

(ii) The regular set Ω ∪ Ξ is said to satisfy the volume-conservation condition,
if each mapping φx in Condition (i) is volume-preserving.

Generally, Ξ is allowed to be empty in Definition 2.4. Then Definition 2.4 (i)
merely describes a Lipschitz domain. Some further comments are in order:

Remark 2.5.

(i) Condition (i) exactly characterizes Gröger’s regular sets, introduced in his
pioneering paper [23]. Note that the volume-conservation condition also has been
required in several contexts, cf. [20] and [24].
Clearly, the properties φx(Ux) = axK and φx

(
Ω∩Ux

)
= axK− are already ensured by

the Lipschitz property of Ω; the crucial point is the behavior of φx(Ξ ∩ Ux).
(ii) A simplifying topological characterization of Gröger’s regular sets in the case

of three space dimensions reads as follows (cf. [27, Ch. 5]):
1. Ξ is the closure of its interior within ∂Ω,
2. the boundary ∂Ξ within ∂Ω is locally bi-Lipschitz diffeomorphic to the open

unit interval (0, 1).
(iii) In particular, all domains with Lipschitz boundary (synonymous: strong

Lipschitz domains) satisfy Definition 2.4: if, after a shift and an orthogonal trans-
formation, the domain lies locally beyond a graph of a Lipschitz function ψ, then one
can define φ(x1, . . . , xd) = (x1 − ψ(x2, . . . , xd), x2, . . . , xd). Obviously, the mapping φ
is then bi-Lipschitz and the determinant of its Jacobian is identically 1.

(iv) It turns out that regularity together with the volume-conservation condition
is not a too restrictive assumption on the mapping φx. In particular, there are such
mappings—although not easy to construct—which map the ball onto the cylinder, the
ball onto the cube and the ball onto the half ball, see [21, 16]. The general message is
that this class has enough flexibility to map “non-smooth” objects onto smooth ones.

(v) The spaces W 1,q
Ξ and W−1,q

Ξ still exhibit the usual interpolation properties,
see [20] for details.

(vi) If Ξ is nonempty and Ω∪Ξ is regular, then Ξ has interior points (with respect
to the boundary topology in ∂Ω), and, consequently, never has boundary measure 0.
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The following assumption is supposed to be valid for all the remaining consider-
ations in the paper.

Assumption 2.6. The set Ω ∪ ΓD is regular with ΓD 6= ∅.
For the moment, it is sufficient to impose only the regularity condition from

Assumption 2.6 (i) on Ω∪ΓD. The volume-conservation condition is not needed until
Section 4, cf. Assumption 4.2 below. As explained in Remark 2.5, Assumption 2.6 in
particular implies that ω(ΓD) > 0.

2.2. General assumptions on (P). We first address the assumptions regarding
(local) existence and uniqueness for the state equation (1.1)–(1.6). This means in
particular that we treat u as a fixed, given inhomogeneity in this context, whereas it
is an unknown control function when considering the optimal control problem (P).

Assumption 2.7. On the quantities in the state system (1.1)–(1.6) we generally
impose:

(i) The functions σ : R → (0,∞) and η : R → (0,∞) are bounded and Lip-
schitzian on any bounded interval,

(ii) the function ε ∈ L∞(Ω;M3) takes symmetric matrices as values, and satis-
fies the usual ellipticity condition, i.e.,

ess inf
x∈Ω

3∑
i,j=1

εij(x)ij ξi ξj ≥ ε ‖ξ‖2R3 ∀ ξ ∈ R3

with a constant ε > 0,
(iii) the function κ ∈ L∞(Ω;M3) also takes symmetric matrices as values, and,

additionally, satisfies an ellipticity condition, that is,

ess inf
x∈Ω

3∑
i,j=1

κij(x) ξi ξj ≥ κ ‖ξ‖2R3 ∀ ξ ∈ R3

holds with a constant κ > 0,
(iv) θl ∈ L∞(J ;L∞(∂Ω)),
(v) α ∈ L∞(∂Ω) with α(x) ≥ 0 a.e. on ∂Ω and

∫
∂Ω
αdω > 0,

(vi) u ∈ L2r(J ;W−1,q
ΓD

) for some q > 3 to be specified in Assumption 3.4 below

and r > 2q
q−3 , cf. Definition 3.10 and Theorem 3.13 below.

Remark 2.8. In assumption (vi), we implicitly made use of the embedding
Lp(ΓN ) ↪→ W−1,q

ΓD
for p > 2

3q, realized by the adjoint operator of the continuous

trace operator τΓN : W 1,q′

ΓD
→ Lp′(ΓN ). In this sense, a function u ∈ L2r(J ;Lp(ΓN ))

is considered as an element of L2r(J ;W−1,q
ΓD

). In the same manner, we will treat the

function αθl ∈ L∞(J ;L∞(∂Ω)) as an element of L∞(J ;W−1,q
∅ ), see [31, Lemma 2.7]

for the required embeddings/trace operators.
Next we turn to the assumptions concerning the optimal control problem (P).

Now, u plays the role of the searched-for variable or function, whose regularity is
implicitly determined by the objective functional in (P). As we will see in the sequel in
§4, our hypotheses on the objective functional stated below imply that the restriction
of the optimal control problem to control functions from a function space U compatible
with the control term in the objective functional yields the desired properties such
as a continuous embedding into L2r(J ;W−1,q

ΓD
) as required in Assumption 2.7 (vi),

see (4.4) and Proposition 4.12 below.
Assumption 2.9. The remaining quantities in (P) fulfill:
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(i) The integrability exponents in the objective functional satisfy p > 4
3q−2 and

s > 2q
q−3 (1− 3

q + 3
ς ), where q and ς are specified in Assumption 3.4 and Definition 4.6

below.
(ii) E is an open (not necessarily proper) subset of Ω.
(iii) θd ∈ L2(E).
(iv) θmax ∈ C(Q) with max(maxΩ θ0, ess supΣ θl) ≤ θmax(x, t) for all (x, t) ∈ Q

and θ0(x) < θmax(T0, x) for all x ∈ Ω.
(v) umax is a given function with umax(x, t) ≥ 0 a.e. on ΣN .
(vi) β > 0.

Note that we do not impose any regularity assumptions on the function umax. In
particular, it is allowed that umax ≡ ∞ so that no upper bound is present.

3. Rigorous formulation, existence and uniqueness of solutions for the
thermistor problem. In this chapter we will present a precise analytical formula-
tion for the thermistor-problem, see Definition 3.11 below. In order to do so, we first
recall some background material. One of the most crucial points is the requirement
of suitable mapping property for Poisson’s operator, cf. Assumption 3.4. The reader
should note that a similar condition was also posed in [5, Ch. 3] in order to get smooth-
ness of the solution; compare also [17], where exactly this regularity for the solution
of Poisson’s equation is needed in order to show uniqueness for the semiconductor
equations. We prove, in particular, some preliminary results which are needed later
on and which may be also of independent interest. After having properly defined a
solution of the thermistor problem, we establish some more preparatory results and
afterwards show existence (locally in time) and uniqueness of the solution of the ther-
mistor problem in Section 3.2. Finally, we show that our concept to treat the problem
is not accidental, but—more or less—inevitable.

3.1. Prerequisites: Elliptic and parabolic regularity. We begin this sub-
section with the definition of the divergence operators. First of all, let us introduce the
brackets 〈·, ·〉 as the symbol for the dual pairing between W−1,2

Ξ and W 1,2
Ξ , extending

the scalar product in L2.

Definition 3.1. Let Ξ ⊂ ∂Ω be closed. Assume that µ is any bounded, measur-
able, M3-valued function on Ω and that γ ∈ L∞(∂Ω \ Ξ) is nonnegative. We define
the operators −∇ · µ∇ and −∇ · µ+ γ̃, each mapping W 1,2

Ξ into W−1,2
Ξ , by

〈−∇ · µ∇ψ, ξ〉 :=

∫
Ω

µ∇ψ · ∇ξ dx for ψ, ξ ∈W 1,2
Ξ

and

〈(−∇ · µ∇+ γ̃)ψ, ξ〉 = 〈−∇ · µ∇ψ, ξ〉+

∫
∂Ω\Ξ

γ ψ ξ dω for ψ, ξ ∈W 1,2
Ξ . (3.1)

In all what follows, we maintain the same notation for the corresponding maximal
restrictions to W−1,q

Ξ , where q > 2.

Remark 3.2. Let us denote the domain for the operator −∇·µ∇, when restricted
to W−1,q

Ξ (q > 2), by Dq(µ), equipped with the graph norm. Then the estimate

‖ − ∇ · µ∇ψ‖W−1,q
Ξ

= sup
‖ϕ‖

W
1,q′
Ξ

=1

∣∣∣∣∫
Ω

µ∇ψ · ∇ϕdx

∣∣∣∣ ≤ ‖µ‖L∞‖ψ‖W 1,q
Ξ

(3.2)
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shows that W 1,q
Ξ is embedded in Dq(µ) for every bounded coefficient function µ. It is

also known that Dq(µ) ↪→ Cα(Ω) for some α > 0 whenever q > 3, see [27, Thm. 3.3].
Additionally, (3.2) implies that the mapping

L∞(Ω;M3) 3 µ 7→ ∇ · µ∇ ∈ L(W 1,q
Ξ ;W−1,q

Ξ )

is a linear and continuous contraction for every q ∈ (1,∞).
In the following, we consider the operators defined in Definition 3.1 mostly in two

incarnations: firstly, the case Ξ = ∅ and µ = κ; and secondly Ξ = ΓD with µ = ε.
We write −∇ · κ∇ and −∇ · κ∇+ α̃ in the first, and −∇ · ε∇ in the second case. We
recall various properties of operators of the form −∇ · µ∇.

Proposition 3.3. Let Ω∪Ξ be regular in the sense of Definition 2.4 and suppose
that the coefficient function µ in (3.1) is real, bounded and elliptic.

(i) Suppose that either ω(Ξ) > 0 or Ξ = ∅ and
∫
∂Ω
γ dω > 0.

1. [28] The quadratic form corresponding to (3.1) is coercive.
2. [23] There is a number q0 > 2 such that

−∇ · µ∇+ γ̃ : W 1,q
Ξ →W−1,q

Ξ

is a topological isomorphism for all q ∈ [2, q0]. The number q0 may be chosen uniformly
for all coefficient functions µ with the same ellipticity constant and the same L∞-
bound. Moreover, for each q ∈ [2, q0], the norm of the inverse of ∇ · µ∇ + γ̃ as a
mapping from W−1,q

Ξ to W 1,q
Ξ may be estimated again uniformly for all coefficient

functions with the same ellipticity constant and the same L∞-bound.
(ii) Assume that γ is a nonnegative function from L∞(∂Ω \ Ξ) and that the

coefficient function µ takes symmetric matrices as values.
1. [29, Cor. 5.21] The operator −∇ · µ∇+ γ̃ + 1 is a positive one on any space

W−1,q
Ξ , if q ∈ [2, 6], i.e., one has the resolvent estimate

sup
λ∈[0,∞)

(λ+ 1)‖(−∇ · µ∇+ γ̃ + 1 + λ)−1‖L(W−1,q
Ξ ) <∞.

In particular, all fractional powers of −∇ · µ∇ + γ̃ + 1 are well-defined and possess
the usual properties, cf. [47, Ch. 1.14].

2. [29, Thm. 4.2] The square root satisfies (−∇·µ∇+γ̃+1)−1/2 ∈ L(W−1,q
Ξ ;Lq),

or in other words, dom
(
(−∇ · µ∇+ γ̃ + 1)1/2

)
embeds into Lq, if q ∈ [2,∞).

See also [6] for recent results as in Proposition 3.3 (ii) in a broader context. Our
next aim is to introduce the solution concept for the thermistor problem. To this end,
we make the following assumption (cf. also Remark 3.25 below):

Assumption 3.4. There is a q ∈ (3, 4) such that the mappings

−∇ · ε∇ : W 1,q
ΓD
→W−1,q

ΓD
(3.3)

and

−∇ · κ∇+ 1 : W 1,q →W−1,q
∅ (3.4)

each provide a topological isomorphism.
The papers [34, Appendix] and [13] provide a zoo of arrangements such that

Assumption 3.4 is satisfied. Note that it is not presumptous to assume that both dif-
ferential operators provide topological isomorphisms at the same time, since the latter
property mainly depends on the behaviour of the discontinuous coefficient functions
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(versus the geometry of ΓD), and these correspond to the material properties in the
workpiece described by the domain Ω, i.e., the coefficient functions should exhibit sim-
ilar properties with regard to jumps or discontinuities in general, the main obstacles
to overcome for the isomorphism property. Since κ is not assumed to be continuous,
Assumption (3.4) is not satisfied a priori, even though no mixed boundary conditions
are present, see [15, Ch. 4] for a striking example. In this sense, mixed boundary con-
ditions are not a stronger obstruction against higher regularity in the range q ∈ (3, 4)
than discontinuous coefficient functions are.

Remark 3.5. In case of mixed boundary conditions it does not make sense to
demand Assumption 3.4—even if all data are smooth—for a q ≥ 4, due to Shamir’s
famous counterexample [45]. Note further that the isomorphism properties in (3.3)
and (3.4) remain valid for all other q̃ ∈ [2, q) due to interpolation, cf. Remark 2.5 (v).

In order to treat the quasilinearity in (1.1), we need to ensure a certain uniformity
of domains of the differential operator −∇·η(θ)κ∇ during the evolution. To this end,
we first note that the isomorphism-property for −∇ · κ∇ + 1 from Assumption 3.4
extends to a broader class of coefficient functions.

Definition 3.6. Let C(Ω) denote the set of positive functions on Ω which are
uniformly continuous and admit a positive lower bound.

Lemma 3.7. Assume that Assumption 3.4 holds for some number q ∈ [2, 4).
If ξ ∈ C(Ω), then (3.3) and (3.4) remain topological isomorphisms, if ε and κ are
replaced by ξε and ξκ, respectively.

A proof can be found in [13, Ch. 6].
Corollary 3.8. Assume that (3.4) is a topological isomorphism for some q ∈

[2, 4). Then, for every ξ ∈ C(Ω), the domain of the operator −∇·ξκ∇+ α̃, considered
in W−1,q

∅ , is still W 1,q. In particular, for every function ζ ∈ C(Ω), the operator
−∇ · η(ζ)κ∇+ α̃ has domain W 1,q.

Proof. The first assertion follows from Lemma 3.7 and relative compactness of the
boundary integral in α̃ with respect to −∇ · ξκ∇, compare [33, Ch. IV.1.3]. For the
second assertion, note that η is assumed to be Lipschitzian on bounded intervals and
bounded from below by 0 as in Assumption 2.7. Thus, η(ζ) is uniformly continuous
and has a strictly positive lower bound.

We are now in the position to define what is to be understood as a solution to
the system (1.1)–(1.6).

Definition 3.9. We define

A(ζ) := −∇ · η(ζ)κ∇+ α̃

as a mapping A : C(Ω)→ L(W 1,q;W−1,q
∅ ).

Definition 3.10. The number r∗(q) = 2q
q−3 is called the critical exponent.

Definition 3.11. Let q > 3 and let r be from (r∗(q),∞). For given J = (T0, T1),
we call the pair (θ, ϕ) a solution of the thermistor-problem, if it satisfies the equations

∂tθ(t) +A(θ(t))θ(t) = (σ(θ(t))ε∇ϕ(t)) · ∇ϕ(t) + αθl(t) in W−1,q
∅ , (3.5)

−∇ · σ(θ(t))ε∇ϕ(t) = u(t) in W−1,q
ΓD

(3.6)

with θ(T0) = θ0 for almost all t ∈ (T0, T1), where

ϕ ∈ L2r(J ;W 1,q
ΓD

) and θ ∈W 1,r(J ;W−1,q
∅ ) ∩ Lr(J ;W 1,q). (3.7)

We call (θ, ϕ) a local solution, if it satisfies (3.5) and (3.6) in the above sense, but
only on (T0, T•) ⊆ (T0, T1).

Remark 3.12.
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(i) In the context of Definition 3.11, ∂tθ always means the time derivative of θ
in the sense of vector-valued distributions, see [1, Ch. III.1] or [18, Ch. IV].

(ii) Via (3.8) and Corollary 3.20 below, we will see that a solution θ in the above
sense is in fact Hölder-continuous on Ω× J . In particular, θ(t) is uniformly continu-
ous on Ω for every t ∈ J , such that A(θ(t)) is well-defined according to Definition 3.9.

(iii) The reader will verify that the boundary conditions imposed on ϕ in (1.5)
and (1.6) are incorporated in this definition in the spirit of [18, Ch. II.2] or [10,
Ch. 1.2]. For an adequate interpretation of the boundary conditions for θ as in (1.2),
see [38, Ch. 3.3.2] and the in-book references there.

We are now going to formulate the main result of this part.
Theorem 3.13. Let q ∈ (3, 4) be a number for which Assumption 3.4 is sat-

isfied, r > r∗(q) and u ∈ L2r(J ;W−1,q
ΓD

), where r∗(q) is the critical exponent from

Definition 3.10. If θ0 is from (W 1,q,W−1,q
∅ ) 1

r ,r
, then there is a unique local solution

of (3.5) and (3.6) in the sense of Definition 3.11.
The proof of this theorem is given in the next subsection.

3.2. Local existence and uniqueness for the state system: the proof.
Let us first briefly sketch the proof of Theorem 3.13 by giving an overview over the
steps:

• The overall proof is based on a local existence result of Prüss for abstract
quasilinear parabolic equations, whose principal part satisfies a certain max-
imal parabolic regularity property, see [43] and Proposition 3.17.

• For the application of this abstract result to our problem, we reduce the
thermistor system to an equation in the temperature θ only by solving the
elliptic equation for ϕ in dependence of θ. This gives rise to a nonlinear
operator S appearing in the reduced equation for θ, see Definition 3.26 and
Proposition 3.28.

• The key tool to verify the assumptions on S for the application of Prüss’
result is Lemma 3.7, which is the basis for the proof of Lemma 3.27. The
application of Lemma 3.7 requires to treat the temperature in a space which
(compactly) embeds into C(Ω). This issue is addressed by Corollary 3.20.

Before we start with the proof itself, let us first recall the concept of maximal
parabolic regularity, a crucial tool in the following considerations, and point out some
basic facts on this:

Definition 3.14. Let X be a Banach space and A be a closed operator with
dense domain dom(A) ⊂ X. Suppose r ∈ (1,∞). Then we say that A has maximal
parabolic Lr(J ;X)-regularity, iff for every f ∈ Lr(J ;X) there is a unique function
w ∈W 1,r(J ;X) ∩ Lr(J ; dom(A)) which satisfies

∂tw(t) +Aw(t) = f(t), w(T0) = 0

in X for almost every t ∈ J = (T0, T1).
Remark 3.15.

(i) As in Remark 3.12, ∂t in Definition 3.14 also always means the time deriva-
tive in the sense of vector-valued distributions.

(ii) We consider the concept of maximal parabolic regularity as adequate for the
solution since it allows for discontinuous (in time) right hand sides—as are required
in our context and in many other applications.

Remark 3.16. The following results on maximal parabolic Lr(J ;X)-regularity
are well-known:
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(i) If A satisfies maximal parabolic Lr(J ;X)-regularity, then it does so for any
other (bounded) time interval, see [14].

(ii) If A satisfies maximal parabolic Lr(J ;X)-regularity for some r ∈ (1,∞),
then it satisfies maximal parabolic Lr(J ;X)-regularity for all r ∈ (1,∞), see [46]
or [14].

(iii) Let Y be another Banach space, being dense in X with Y ↪→ X. Then there
is an embedding

W 1,r(J ;X) ∩ Lr(J ;Y ) ↪→ Cρ(J ; (Y,X)ζ,1) (3.8)

where 0 < ρ ≤ ζ − 1
r , see [2, Ch. 3, Thm. 3]. In the immediate context of maximal

parabolic regularity, Y is taken as dom(A) equipped with the graph norm, of course.
According to (i) and (ii), we only say that A satisfies maximal parabolic regularity on
X.

In the following, we establish some preliminary results for the proof of Theo-
rem 3.13, which will heavily rest on the following fundamental theorem of Prüss,
see [43]:

Proposition 3.17. Let Y,X be Banach spaces, Y dense in X, such that Y ↪→ X
and set J = (T0, T1) and r ∈ (1,∞). Suppose that A maps (Y,X) 1

r ,r
into L(Y ;X)

such that A(w0) satisfies maximal parabolic regularity on X with dom(A(w0)) = Y
for some w0 ∈ (Y,X) 1

r ,r
. Let, in addition, S : J × (Y,X) 1

r ,r
→ X be a Carathéodory

map and S(·, 0) be from Lr(J ;X). Moreover, let the following two assumptions be
satisfied:

(A) For every M > 0, there is a constant L(M) such that for all w, w̄ ∈ (Y,X) 1
r ,r

,

where max(‖w‖(Y,X) 1
r
,r
, ‖w̄‖(Y,X) 1

r
,r

) ≤M , we have

‖A(w)−A(w̄)‖L(Y ;X) ≤ L(M)‖w − w̄‖(Y,X) 1
r
,r
.

(S) For every M > 0, assume that there is a function hM ∈ Lr(J) such that for
all w, w̄ ∈ (Y,X) 1

r ,r
, where max(‖w‖(Y,X) 1

r
,r
, ‖w̄‖(Y,X) 1

r
,r

) ≤M , it is true that

‖S(t, w)− S(t, w̄)‖X ≤ hM (t)‖w − w̄‖(Y,X) 1
r
,r

(3.9)

for almost every t ∈ J .
Then, for each w0 ∈ (Y,X) 1

r ,r
, there exists Tmax ∈ J such that the problem{

∂tw(t) +A(w(t))w(t) = S(t, w(t)) in X,

w(T0) = w0

(3.10)

admits a unique solution w ∈ W 1,r(T0, T•;X) ∩ Lr(T0, T
∗
• ;Y ) on (T0, T•) for every

T• ∈ (T0, Tmax).
Remark 3.18. It is known that the solution of the thermistor problem possibly

ceases to exist after finite time in general, cf. [5, Ch. 5] and the references therein.
Thus, one has to expect here, in contrast to the two-dimensional case treated in [30],
only a local-in-time solution. In this scope, Prüss’ theorem will prove to be the ade-
quate instrument.

As indicated above, we will prove Theorem 3.13 by reducing the thermistor system
to an equation in the temperature only and apply Proposition 3.17 to this equation.
To be more precise, we first establish the assumptions (A) for r = r > r∗(q) and A as
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defined in Definition 3.9. We then solve the elliptic equation (3.6) for ϕ (uniquely) for
every time point t in dependence of a function ζ and u(t), where ζ enters the equa-
tion inside the coefficient function σ(ζ)ε. Then the right-hand side of the parabolic
equation (3.5) may be written also as a function S solely of t and ζ. We then show
that this function satisfies the suppositions (S) in Prüss’ theorem.

To carry out this concept, we need several prerequisites: here our first central aim
is to show that indeed the mapping (W 1,q,W−1,q

∅ ) 1
r ,r
3 ζ 7→ A(ζ) from Definition 3.9

satisfies the assumptions from Proposition 3.17 for r > r∗(q), cf. Lemma 3.21 below.
For doing so, we first investigate the spaces (W 1,q,W−1,q

∅ )ζ,1 in view of their embed-
ding into Hölder spaces. For later use, the subsequent result is formulated slightly
broader as presently needed.

Theorem 3.19. Let q ∈ (3, 4) and ς ∈ [2, q]. For every τ ∈ (0, q−3
2q (1− 3

q + 3
ς )−1),

the interpolation space (W 1,q,W−1,ς
∅ )τ,1 embeds into some Hölder space Cδ(Ω) with

δ > 0.
Proof. We apply the reiteration theorem [47, Ch. 1.10.2] to obtain

(W 1,q,W−1,ς
∅ )τ,1 = (W 1,q, (W 1,q,W−1,ς

∅ ) 1
2 ,1

)2τ,1

↪→ (W 1,q, (W 1,ς ,W−1,ς
∅ ) 1

2 ,1
)2τ,1 ↪→ (W 1,q, (W−1,ς

∅ ,Dς) 1
2 ,1

)2τ,1, (3.11)

where Dς(id3) denotes the domain of the Laplacian −∆+1 acting on the Banach space
W−1,ς
∅ , cf. Remark 3.2. Denoting the domain of (−∆ + 1)1/2, considered on the same

space, by Dς(id3)
1
2 , one has (W−1,ς

∅ ,Dς(id3)) 1
2 ,1

↪→ Dς(id3)
1
2 , cf. [47, Ch. 1.15.2]. Due

to Proposition 3.3 (ii), we already know the embedding Dς(id3)
1
2 ↪→ Lς . Inserting

in (3.11), this altogether yields (W 1,q,W−1,ς
∅ )τ,1 ↪→ (W 1,q, Lς)2τ,1.

We define p :=
(

1−2τ
q + 2τ

ς

)−1
and observe that δ := 1 − 2τ − 3

p ∈ (0, 1), due to

our condition on τ . Denoting by Ht,p the corresponding space of Bessel potentials
(cf. [47, Ch. 4.2.1]) one has the embedding H1−2τ,p ↪→ Cδ(Ω), see [47, Thm. 4.6.1].
This, combined with the interpolation inequality for H1−2τ,p ([20, Thm. 3.1]) gives
for any ψ ∈W 1,q the estimate

‖ψ‖Cδ(Ω) ≤ ‖ψ‖H1−2τ,p ≤ ‖ψ‖1−2τ
W 1,q ‖ψ‖2τLς . (3.12)

But it is well-known (cf. [47, Ch. 1.10.1] or [7, Ch. 5, Prop. 2.10]) that an inequality
of type (3.12) is constitutive for the embedding (W 1,q, Lς)2τ,1 ↪→ Cδ(Ω).

Corollary 3.20.
(i) Let q > 3 and ς ∈ [2, q]. Then, for every s > 2q

q−3 (1 − 3
q + 3

ς ), the interpo-

lation space (W 1,q,W−1,ς
∅ ) 1

s ,s
embeds into some Hölder space Cδ(Ω), and thus even

compactly into C(Ω).
(ii) Under the same supposition, there exists a % > 0 such that

W 1,s(J ;W−1,ς
∅ ) ∩ Ls(J ;W 1,q) ↪→ C%(J ;C%(Ω)).

(iii) Let Assumption 3.4 hold true for some q ∈ (3, 4). Then the operator
A(ζ) satisfies maximal parabolic regularity on W−1,q

∅ with domain W 1,q for every

ζ ∈ (W 1,q,W−1,q
∅ ) 1

r ,r
with r > r∗(q), where r∗(q) is the critical exponent from Defi-

nition 3.10.
Proof. (i) We have (W 1,q,W−1,ς

∅ ) 1
s ,s

↪→ (W 1,q,W−1,ς
∅ )ι,1 for every ι ∈ ( 1

s , 1). The

condition on s implies that the interval I := ( 1
s ,

q−3
2q (1− 3

q+ 3
ς )−1) is non-empty. Taking
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ι from I, the assertion follows from Theorem 3.19. (ii) follows from Theorem 3.19
and Remark 3.16. (iii) The claim follows from uniform continuity of functions from
(W 1,q,W−1,q

∅ ) 1
r ,r

by (i), Lemma 3.7 for ξ := η(ζ) and [29, Thm. 5.4/5.19 (ii)].

Setting ς = q in Corollary 3.20 (i) and (ii) gives the condition r > r∗(q) = 2q
q−3

for the assertions to hold with s = r. We will use this special case frequently in the
course of the remaining part of this section. Let us now turn to the operator A.

Proposition 3.21. Suppose that Assumption 3.4 holds true for some q ∈ (3, 4)
and that θ0 ∈ (W 1,q,W−1,q

∅ ) 1
r ,r

where r > r∗(q). With A as in Definition 3.9, the

function (W 1,q,W−1,q
∅ ) 1

r ,r
3 ζ 7→ A(ζ) then satisfies the assumptions from Proposi-

tion 3.17 for the spaces X = W−1,q
∅ and Y = W 1,q.

Proof. With ς = q, Corollary 3.20 shows that (W 1,q,W−1,q
∅ ) 1

r ,r
↪→ C(Ω), such

that the operator A indeed maps (W 1,q,W−1,q
∅ ) 1

r ,r
into L(W 1,q;W−1,q

∅ ) by Corol-
lary 3.8. Using Lipschitz continuity of η on bounded sets and Remark 3.2, we also
obtain (A): Let w, w̄ ∈ (W 1,q,W−1,q

∅ ) 1
r ,r

with norms bounded by M > 0. Then we
have

‖A(w)−A(w̄)‖L(W 1,q ;W−1,q
∅ ) = ‖∇ · (η(w)− η(w̄))κ∇‖L(W 1,q,W−1,q

∅ )

≤ Lη‖κ‖L∞‖w − w̄‖C(Ω)

≤ CLη‖κ‖L∞‖w − w̄‖(W 1,q,W−1,q
∅ ) 1

r
,r
.

Finally, the property of maximal parabolic regularity for A(θ0) follows immediately
from Corollary 3.20.

Next we will establish and investigate the right hand hand side of (3.10). For
doing so, we now turn our attention to the elliptic equation (3.6).

Lemma 3.22. For q ≥ 2 and ζ ∈ C(Ω), aζ(ϕ1, ϕ2) := (σ(ζ)ε∇ϕ1) · ∇ϕ2 defines

a continuous bilinear form aζ : W 1,q
ΓD
×W 1,q

ΓD
→ Lq/2. Moreover, (ζ, ϕ) 7→ aζ(ϕ,ϕ) is

Lipschitzian over bounded sets in C(Ω)×W 1,q
ΓD

.
Proof. Bilinearity and continuity of each aζ are clear. The second assertion follows

from a straightforward calculation with the resulting estimate

‖aζ1(ϕ1, ϕ1)− aζ2(ϕ2, ϕ2)‖Lq/2 ≤ ‖σ(ζ1)− σ(ζ2)‖L∞‖ε‖L∞‖ϕ1‖2W 1,q
ΓD

+ 2‖σ(ζ2)‖L∞‖ε‖L∞‖ϕ1‖W 1,q
ΓD

‖ϕ1 − ϕ2‖W 1,q
ΓD

,

Lipschitz continuity of σ and boundedness of the underlying sets.
Let us draw some further conclusions from Lemma 3.7. For this, we assume

Assumption 3.4 for the rest of this chapter.
Theorem 3.23. The mapping

C(Ω) 3 φ 7→ (−∇ · φε∇)−1 ∈ LH(W−1,q
ΓD

;W 1,q
ΓD

)

is well-defined and even continuous.
Proof. The well-definedness assertion results from Lemma 3.7. The second

assertion is implied by the first, Remark 3.2 and the continuity of the mapping
LH(X;Y ) 3 B 7→ B−1 ∈ LH(Y ;X), see [44, Ch. III.8].

Corollary 3.24. Let C ⊂ C(Ω) be a compact set in C(Ω) which admits a
common lower positive bound. Then the function

C 3 φ 7→ J (φ) := (−∇ · φε∇)
−1 ∈ LH(W−1,q

ΓD
;W 1,q

ΓD
)
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is bounded and even Lipschitzian. The same holds for C×B 3 (φ, v) 7→ J (φ)v ∈W 1,q
ΓD

for every bounded set B ⊂W−1,q
ΓD

.

Proof. Theorem 3.23 and the compactness of C in C(Ω) immediately imply bound-
edness of J on C. In turn, Lipschitz continuity of J is obtained from boundedness
and the resolvent-type equation

(−∇ · φ1ε∇)−1 − (−∇ · φ2ε∇)−1

= (−∇ · φ1ε∇)−1(−∇ · (φ2 − φ1)ε∇)(−∇ · φ2ε∇)−1

(read: A−1−B−1 = A−1(B−A)B−1) and Remark 3.2. Considering the assertion on
the combined mapping, boundedness is obvious and further we have for φ1, φ2 ∈ C
and v1, v2 ∈ B:

‖J (φ1)v1 − J (φ2)v2‖W 1,q
ΓD

≤ ‖J (φ1)− J (φ2)‖L(W−1,q
ΓD

,W 1,q
ΓD

) ‖v1‖W−1,q
ΓD

+ ‖J (φ2)‖L(W−1,q
ΓD

,W 1,q
ΓD

)‖v1 − v2‖W−1,q
ΓD

.

With Lipschitz continuity and boundedness of J over C and boundedness of B, this
implies the claim.

Remark 3.25. At this point we are in the position to discuss the meaning of
Assumption 3.4 in some detail. Under Assumption 2.6 (i) for a closed subset Ξ of ∂Ω,
it is known that, even for arbitrary measurable, bounded, elliptic coefficient functions
µ, (Dq(µ),W−1,q

Ξ )τ,1 embeds into a Hölder space for suitable τ , cf. [27, Cor. 3.7]
(for Dq(µ), see Remark 3.2). In particular, one does not need an assumption for the

ismorphism property between W 1,q
Ξ and W−1,q

Ξ for this result. The crucial point behind
Assumption 3.4 is to achieve both independence of the domains for the operators
−∇φµ∇ within a suitable class of functions φ, as well as a well-behaved dependence
on φ in the space L(Dq;W−1,q

Ξ ), cf. Lemma 3.7 and Corollaries 3.8 and 3.24.
The next lemmata establish the right-hand side in (3.10) with the correct regular-

ity and properties. Moreover, Lipschitz continuity with respect to the control u in the
elliptic equation is shown along the way, which will become useful in later considera-
tions. Recall that σ : R→ R+ is Lipschitzian on any finite interval by Assumption 2.7.

Definition 3.26. We assign to ζ ∈ C(Ω) and v ∈ W−1,q
ΓD

the solution ϕv of
−∇ · σ(ζ)ε∇ϕv = v via ϕv = J (σ(ζ))v with J as in Corollary 3.24. Moreover, set

Ψv(ζ) := aζ(J (σ(ζ))v,J (σ(ζ))v)

for ζ ∈ C(Ω) with aζ as in Lemma 3.22.

Lemma 3.27. Let C be a compact subset of C(Ω) and B a bounded set in W−1,q
ΓD

.

Then (v, ζ) 7→ Ψv(ζ) is Lipschitzian from B× C into Lq/2 and the Lipschitz constant
of ζ 7→ Ψv(ζ) is bounded over v ∈ B.

Proof. For every ζ ∈ C, the function σ(ζ) belongs to C(Ω), thus J (σ(ζ))v is indeed
from W 1,q

ΓD
thanks to Lemma 3.7. Hence, Ψv(ζ) ∈ Lq/2 is clear by Hölder’s inequality.

Let us show the Lipschitz property of Ψ: First, note that Nemytskii operators induced
by Lipschitz functions preserve compactness in the space of continuous functions, and
note further that the set of all σ(ζ) for ζ ∈ C admits a common positive lower bound
by the Lipschitz property of σ. Hence, the set {σ(ζ) : ζ ∈ C} satisfies the assumptions
in Lemma 3.22 and Corollary 3.24. For ζ1, ζ2 ∈ C and v1, v2 ∈W−1,q

ΓD
, we first obtain

via Lemma 3.22

‖Ψv1
(ζ1)−Ψv2

(ζ2)‖Lq/2 ≤ La

(
‖ζ1 − ζ2‖C(Ω) + ‖J (σ(ζ1))v1 − J (σ(ζ2))v2‖W 1,q

ΓD

)
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and further with Corollary 3.24

‖J (σ(ζ1))v1 − J (σ(ζ2))v2‖W 1,q
ΓD

≤ LJ
(
‖σ(ζ1)− σ(ζ2)‖C(Ω) + ‖v1 − v2‖W−1,q

ΓD

)
.

The assertion follows since σ was Lipschitz continuous. Uniformity of the Lipschitz
constant of ζ 7→ Ψv(ζ) is immediate from the previous considerations.

Following the strategy outlined above, we will specify the mapping S from Propo-
sition 3.17 for our case and show that it satisfies the required conditions.

Proposition 3.28. Let q ∈ (3, 4) be such that Assumption 3.4 is satisfied,
r > r∗(q), and u ∈ L2r(J ;W−1,q

ΓD
). We set

S(t, ζ) := Ψu(t)(ζ) + αθl(t).

Then S satisfies the conditions from Proposition 3.17 for the spaces X = W−1,q
∅ and

Y = W 1,q.
Proof. We show that S(·, 0) ∈ Lr(J ;W−1,q

∅ ). The function αθl is essentially

bounded in time with values in W−1,q
ΓD

by virtue of Remark 2.8 and thus poses no
problem here. For almost all t ∈ J , we further have∥∥Ψu(t)(0)

∥∥
Lq/2
≤ |σ(0)|‖ε‖L∞‖J (σ(0)‖2L(W−1,q

ΓD
;W 1,q

ΓD
)
‖u(t)‖2

W−1,q
ΓD

.

Since u is 2r-integrable in time, this means that Ψu(t)(0) ∈ Lr(J ;Lq/2). Due to q > 3

and thus Lq/2 ↪→W−1,q
∅ (cf. Remark 2.3), we hence have S(·, 0) ∈ Lr(J ;W−1,q

∅ ).

Let us now show the Lipschitz condition (3.9). If C ⊂ (W 1,q,W−1,q
∅ ) 1

r ,r
is bounded,

its closure C with respect to the sup-norm on Ω forms a compact set in C(Ω) by
Corollary 3.20. The desired Lipschitz estimate for S(t, ·) now follows immediately
from Lemma 3.27.

Note that this is the point where the supposition on the time-integrability of u
from Assumption 2.7 (vi) comes into play. Essentially, Ψu(t)(ζ) only admits half the
time-integrability of u, but Propositions 3.21 and 3.28 both require r > r∗(q) to make
use of the (compact) embedding (W 1,q,W−1,q

∅ ) 1
r ,r

↪→ C(Ω). Hence, we need more

than 2r∗(q)-integrability for u in time.
Now we have established all ingredients to prove Theorem 3.13. For this purpose,

let the assumptions of Theorem 3.13 hold. Combining Propositions 3.21 and 3.28
with Proposition 3.17, we obtain a local-in-time solution θ of the equation

∂tθ(t) +A(θ(t))θ(t) = S(t, θ(t)), θ(T0) = θ0

on (T0, T∗) with T∗ ∈ (T0, T1], such that

θ ∈W 1,r(T0, T∗;W
−1,q
∅ ) ∩ Lr(T0, T∗;W

1,q) ↪→ C([T0, T∗]; (W 1,q,W−1,q
∅ ) 1

r ,r
).

If T∗ < T1, we may apply Proposition 3.17 again on the interval (T∗, T1) with initial
value θ(T∗) ∈ (W 1,q,W−1,q

∅ ) 1
r ,r

, thus obtaining another local solution on a subinterval

of (T∗, T1), “glue” the solutions together and start again (note that A(θ(t)) again
satisfies maximal parabolic regularity for every t ∈ [T∗, T1) by Corollary 3.20). As
we may let these intervals of local existence overlap, the uniqueness of local solutions
by Proposition 3.17 implies that the “glued” solution satisfies the claimed regularity
for the solutions as in (3.7). In this way, we either obtain a solution on the whole
prescribed interval (T0, T1) or end up with a maximal interval of existence, denoted
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by Jmax = (T0, Tmax), such that there exists a solution θ in the above sense on every
interval (T0, T•) where T• ∈ Jmax (or equivalently (T0, T•] ⊂ (T0, Tmax)). The maximal
time of existence Tmax is characterized by the property that limt↗Tmax

θ(t) does not

exist in (W 1,q,W−1,q
∅ ) 1

r ,r
, see [43, Cor. 3.2].

Consider such T• ∈ Jmax. We now define the function ϕ(t) for each t ∈ (T0, T•)
as the solution of −∇ · σ(θ(t))ε∇ϕ = u(t), that is,

ϕ(t) := J (σ(θ(t)))u(t). (3.13)

Then ϕ indeed belongs to L2r(T0, T•;W
1,q
ΓD

), since J (σ(θ(t)) is uniformly bounded in

L(W−1,q
ΓD

;W 1,q
ΓD

) over [T0, T•] due to the compactness of the set {θ(t) : t ∈ [T0, T•]} in

C(Ω) (cf. Corollary 3.20 and Corollary 3.24), and u was from L2r(J ;W−1,q
ΓD

).
Obviously, (θ, ϕ) is then a solution of the thermistor-problem on (T0, T•) in the

spirit of Definition 3.11 as claimed in Theorem 3.13.
We end this chapter with some explanations why the chosen setting in spaces of

the kindW−1,q
∅ andW−1,q

ΓD
with q > 3 is adequate for the problem under consideration.

Let us inspect the requirements on the spaces in which the equations are formu-
lated. Clearly, they need to contain Lebesgue spaces on Ω as well as on the boundary
Γ (or on a subset of the boundary like ΓN ), in order to incorporate the nonhomogene-
nous Neumann boundary data present in both equations. The boundary conditions
should be reflected by the formulation of the equations in an adequate way, cf. Re-
mark 3.12 (iii). These demands already strongly prejudice spaces of type W

−1,qp
∅ for

the parabolic equation and W−1,qe
ΓD

for the elliptic equation with probably different
integrability orders qp and qe for each equation. Finally, in order to treat the nonlinear
parabolic equation, we need maximal parabolic regularity for the second order diver-
gence operators A(ζ) over W

−1,qp
∅ , which is generally available by Corollary 3.20 (iii)

or [26, Thm. 5.16/Rem. 5.14] in a general context.
Further, aiming at continuous solutions θ, which are needed for having fulfillable

Constraint Qualifications for (P) in the presence of state constraints, it is necessary
that the domain Dqp(σ(ζ)κ) of the differential operators A(ζ), cf. Remark 3.2, embeds

into the space of continuous functions on Q. But it is known that solutions y to
equations −∇·µ∇y = f for µ ∈ L∞(Ω,Mn) elliptic with f ∈W−1,n

∅ , where n denotes
the space dimension, may in general even be unbounded, see [35, Ch. 1.2]. On the
other hand, Dqp(σ(ζ)κ) embeds into a Hölder space if qp > 3, see Remark 3.2. These
two facts make the requirement qp > n = 3 expedient. Let us now assume that the
elliptic equation admits solutions whose gradient is integrable up to some order qg.

Then the right hand side in the parabolic equation prescribes qg ≥ 6qp
qp+3 in order to

have the embedding Lqg/2 ↪→ W
−1,qp
∅ . From the requirement qp > 3 then follows

qg > 3 as well, i.e., the elliptic equation must admit W
1,qg
ΓD

-solutions with qg > 3.

With right-hand sides in W−1,qe
ΓD

, the best possible constellation is thus qe = qg > 3
again. Having qe and qp both in the same range, we simply choose q = qe = qp > 3.

Moreover, in order to actually have W 1,q
ΓD

-solutions to the elliptic equations for

all right-hand sides from W−1,q
ΓD

, the operator −∇ · σ(ζ)ε∇ must be a topological

isomorphism between W 1,q
ΓD

and W−1,q
ΓD

. It is also a well-established fact that solu-
tions to elliptic equations with bounded and coercive, but discontinuous coefficient
functions may admit almost arbitrarily poor integrability properties for gradients of
their solutions, see [42] and [15, Ch. 4]. Under Assumption 3.4, we know that this is
not the case for −∇ · ε∇ over W−1,q

ΓD
, but it is clear that it is practically impossible
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to guarantee this also for the operators −∇ · σ(ζ)ε∇ for all ζ, if σ(ζ) is discontinuous
in general. However, from Lemma 3.7 we know that if σ(ζ) if uniformly continuous
on Ω, then the isomorphism property carries over. This shows that continuous so-
lutions for the parabolic equation are also needed purely from an analytical point of
view, without the considerations coming from the optimal control problem, and also
explains why Assumption 3.4 is, in a sense, a “minimal” assumption.

4. Global solutions and existence of optimal controls. Our aim in the
following section is to establish existence of optimal solutions for (P) coming from
the set of control functions which admit a solution on the whole time interval. These
control functions will be called “global controls”, see Definition 4.3. In view of the
state constraints and the end time observation in the objective of (P), it is natural to
restrict the optimal control problem to the set of global controls. We will see below
that this set is in fact nonempty, and in a companion paper [40], we even show that
it is open. The latter property is, however, not needed here in order to show that
optimal solutions to (P) exist.

Let us give a brief roadmap for the upcoming considerations. We first establish
the notion of a global control and show the set of global controls is in fact nonempty
since it includes the zero control. Then, we turn to the existence of optimal controls.
The arguments follow the classical direct method of the calculus of variations, see
Theorem 4.14. To this end, we need essentially two “special” ingredients:

1. A closedness result for the set of global controls to make sure that the limit
of a sequence of global controls is still a global one. Such a result is given in
the form of Theorem 4.7, and requires a certain boundedness of the gradient
of the temperatures which is ensured by the second addend in the objective
in (P).

2. A compactness result for the controls under consideration in order to pass
to the limit in the nonlinear state system. We choose to consider a stronger
space of controls for this, cf. (4.4), induced by the third term in the objective
functional, and show that this space compactly embeds into L2r(J ;W−1,q

ΓD
)

in Proposition 4.12.

The setting and results of §3 are assumed as given from now on, i.e., we consider
the assumptions of Theorem 3.13 to be fulfilled and fixed, that means, q > 3 and
r > r∗(q) are given from now on. In particular, for every u ∈ L2r(J ;W−1,q

ΓD
), there

exists a local solution θu such that θu ∈ W 1,r(T0, T•;W
1,q) ∩ Lr(T0, T•;W

−1,q
∅ ) for

every T• ∈ Jmax(u), the maximal interval of existence for a given control u. We
consider ϕ ∈ L2r(T0, T•;W

1,q
ΓD

) to be given in dependence of u and θu as in (3.13).

Due to q > 3 and r > r∗(q), each solution θu is Hölder-continuous on [T0, T•]×Ω, cf.
Corollary 3.20 (ii).

Remark 4.1. As noted above, if the solution θu for a given control u does not
exist on the whole time interval J , there exists Tmax(u) ≤ T1, the maximal time of
existence, such that limt↗Tmax(u) θu(t) does not exist in (W 1,q,W−1,q

∅ ) 1
r ,r

. For a proof

and an equivalent formulation in the maximal regularity-norm, see [43, Cor. 3.2].

We make the following assumption for the rest of this paper:

Assumption 4.2. In addition to Assumption 2.6, we from now on require that
Ω ∪ ΓD satisfies the volume-conservation condition from Definition 2.4 (ii).

Definition 4.3. We call a control u ∈ L2r(J ;W−1,q
ΓD

), r > r∗(q), a global
control if the corresponding solution θ exists on the whole prescribed interval (T0, T1)
and denote the set of global controls by Ug. Moreover, we define the control-to-state
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operator

S : Ug 3 u 7→ S(u) = θu ∈W 1,r(J ;W−1,q
∅ ) ∩ Lr(J ;W 1,q)

on Ug.
Let us firstly show that the previous definition is in fact meaningful in the sense

that Ug 6= ∅. The natural candidate for a global control is u ≡ 0. One readily observes
that the control u ≡ 0 leads to the solution ϕ ≡ 0 for the elliptic equation (3.6), hence
the right-hand side in the parabolic equation reduces to αθl(t) in this case. Indeed,
we will show that there exists a global solution θu≡0 to the equation

∂tθ +A(θ)θ = αθl, θ(T0) = θ0. (4.1)

In order to obtain a global solution to (4.1), we need the volume-conservation
condition. Under this additional assumption, the following result has been shown
in [41, Thm. 5.3]. Note that our assumption of regular Ω ∪ ΓD is only a special case
of the admissible geometries in [41].

Proposition 4.4. Assume that Ω ∪ Ξ is regular and in addition satisfies the
volume-conservation condition. Let µ be a coefficient function on Ω, measurable,
bounded, elliptic. Assume that φ : R → [φ, φ], where φ > 0, is Lipschitz continuous
on bounded sets. Suppose further that

−∇ · µ∇ : W 1,q
Ξ →W−1,q

Ξ

is a topological isomorphism for some q > 3. Let w0 be from (W 1,q
Ξ ,W−1,q

Ξ ) 1
r ,r

with

r > r∗(q) = 2q
q−3 . Then, for every f ∈ Lr(J ;W−1,q

Ξ ), there exists a unique global
solution w of the quasilinear equation

∂tw −∇ · φ(w)µ∇w = f, w(T0) = w0,

which belongs to W 1,r(J ;W−1,q
Ξ ) ∩ Lr(J ;W 1,q

Ξ ).
With w0 = θ0, Ξ = ∅, φ = η, µ = κ and f = αθl, we may use Proposition 4.4 to

ensure the existence of a global solution of (4.1) in the sense of Definition 3.11 under
Assumption 3.4 – in particular, 0 ∈ Ug follows. In [41], Proposition 4.4 is proven for
the case where the differential operator consists of the divergence-gradient operator
only. However, it is clear that the result extends to the operators of the form A
including the boundary form since the latter is relatively compact with respect to
the main part, cf. Corollary 3.8 and the reference there, see also [26, Lem. 5.15]. We
summarize these considerations in the following

Corollary 4.5. The zero control u ≡ 0 is a global one.
Let us turn to the question of existence of an optimal control of (P). Following

the standard direct method of the calculus of variations, one soon encounters the
problem of lacking uniform boundedness in a suitable space for solutions θun associ-
ated to a minimizing sequence of global controls un, which is a common obstacle to
overcome when treating quasilinear equations. To circumvent this, we use Proposi-
tion 3.3 (i) to show that the solutions θun , in this scenario, are uniformly bounded
in W 1,s(J ;W−1,ς

∅ ), where ς ≤ 3 < q (in general only ς ∼ 3
2 ) and s is the exponent

from the second addend in the objective function in (P). As this term in the ob-
jective, together with the state constraints posed in (P), gives an additional bound
in Ls(J ;W 1,q), we can employ Corollary 3.20 to “lift” this boundedness result to a
Hölder space, which is suitable for passing to the limit with a minimizing sequence.
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However, in order to apply Corollary 3.20, the exponent s has to be sufficiently large.
The precise bound for s is characterized by the following

Definition 4.6. Let q ∈ (2,min{q0, 3}] be given, where q0 is the number from
Proposition 3.3 (i), and set ς := 3q

6−q . Then we define the number r̄(q, ς) > 0 by

r̄(q, ς) :=
2q

q − 3

(
1− 3

q
+

3

ς

)
.

On account of ς ≤ 3 < q it follows that r̄(q, ς) > r∗(q) = 2q
q−3 . Therefore,

for a given number s > r̄(q, ς), the previous results, in particular the assertions
of Theorem 3.13 and Corollary 4.5 hold with r = s. The next theorem precisely
elaborates the argument depicted before Definition 4.6:

Theorem 4.7. Let s > r̄(q, ς).
(i) Consider a sequence Ug ⊃ (un) which converges to some ū ∈ L2s(J ;W−1,q

ΓD
).

If the associated sequence of solutions (θun) admits a subsequence which converges to
some θ̄ in C(Q), then ū ∈ Ug and θ̄ = θū.

(ii) Let U ⊆ Ug be bounded in L2s(J ;W−1,q
ΓD

) and suppose in addition that the

associated set of solutions K = {θu : u ∈ U} is bounded in Ls(J ;W 1,q). Then K is
even compact in C(Q) and the closure of U in L2s(J ;W−1,q

ΓD
) is still contained in Ug.

As indicated above, the second addend in the objective functional together with
the state constraints will guarantee the bound in Ls(J ;W 1,q) for the minimizing
sequence, see the proof of Theorem 4.14 below.

Proof of Theorem 4.7.
(i) For the first assertion, consider the sequence (un) from the assumptions

with the associated states (θn) := (θun). By assumption, there exists a subsequence
of (θn), called (θnk), which converges to some θ̄ in C(Q). Lemma 3.27 shows that
Ψunk

(θnk)→ Ψū(θ̄) as k →∞. By [41, Lem. 5.5], the equations

∂tζ +A(θnk)ζ = Ψunk
(θnk) + αθl, θnk(T0) = θ0

have unique solutions ζnk ∈W 1,s(J ;W−1,q
∅ ) ∩ Ls(J ;W 1,q), which, due to uniqueness

of solutions for the nonlinear state system, must coincide with θnk . This means, on
the one hand, that ζnk = θnk → θ̄ in C(Q) as k → ∞. On the other hand, [41,
Lem. 5.5] also shows that the sequence (ζnk) has a limit ζ̄ in the maximal regularity
space as k goes to infinity, where ζ̄ is the solution of the limiting problem

∂tζ +A(θ̄)ζ = Ψū(θ̄) + αθl, ζ(T0) = θ0.

We do, however, already know that ζ̄ = θ̄, such that θ̄ is the unique global solution
to the nonlinear problem for the limiting control ū, i.e., ζ̄ = θ̄ =: θū. In particular,
ū is still a global control. Note that, as explained before Corollary 4.5, one needs
to extend the result from [41] to the actual operator A, as we consider here, in a
straight-forward way.

(ii) We show that K is bounded in a suitable maximal-regularity-like space.
To this end, we first investigate the right-hand side in the parabolic equation (3.5).
Denote by (θu, ϕu) the solution for a given u ∈ U . Thanks to Assumption 2.7 (i),
Proposition 3.3 (i) shows that, with q as in Definition 4.6, −∇·σ(θ)ε∇ is a topological
isomorphism between W 1,q

ΓD
and W−1,q

ΓD
with

sup
θ∈K
‖ (−∇ · σ(θ)ε∇)

−1 ‖L(W−1,q
ΓD

;W 1,q
ΓD

) <∞. (4.2)
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Hence, for every u ∈ U there exists a unique ψ = ψu ∈ L2s(J ;W 1,q
ΓD

) such that

ψu(t) = (−∇ · σ(θu(t))ε∇)
−1
u(t) in W 1,q

ΓD

for almost every t ∈ (T0, T1), and

sup
u∈U
‖ψu‖L2s(J;W 1,q

ΓD
) <∞.

Since W 1,q
ΓD

↪→W 1,q
ΓD

and, by uniqueness of ψu, we in particular obtain ϕu = ψu, such

that the family ϕu is bounded in L2s(J ;W 1,q
ΓD

) as well. Estimating as in Lemma 3.27,
we find that also

sup
u∈U
‖(σ(θu)ε∇ϕu) · ∇ϕu‖Ls(J;Lq/2) <∞.

Using the boundedness assumption on K in Ls(J ;W 1,q), both the family of func-
tionals α̃θu and, here also employing boundedness of η, the divergence-operators
−∇ · η(θu)κ∇θu are uniformly bounded over U , i.e.,

sup
u∈U
‖∇ · η(θu)κ∇θu‖Ls(J;W−1,q

∅ ) + ‖α̃θu‖Ls(J;W−1,q
∅ ) <∞.

Sobolev embeddings give the embedding Lq/2 ↪→ W−1,ς
∅ for ς = 3q

6−q , and certainly

W−1,q
∅ ↪→W−1,ς

∅ due to q > ς. Hence,

∂tθu = ∇ · η(θu)κ∇θu − α̃θu + (σ(θu)ε∇ϕu) · ∇ϕu + αθl

is uniformly bounded over U in L2s(J ;W−1,ς
∅ ). This shows that K is bounded in the

space W 1,s(J ;W−1,ς
∅ ) ∩ Ls(J ;W 1,q). By Corollary 3.20, K is then also bounded in a

Hölder space and thus a (relatively) compact set in C(Q). This was the first claim.
Now consider a sequence (un) ⊂ U , converging in L2s(J ;W−1,q

ΓD
) to the limit ū ∈ U .

By compactness of K, the sequence of associated solutions (θun) admits a subsequence
which converges in C(Q). But then (i) shows that ū ∈ Ug, hence U ⊆ Ug.

Remark 4.8. Note that we used Proposition 3.3 (i) instead of Lemma 3.7 at the
beginning of the proof of the second assertion in Theorem 4.7. This is indeed a crucial
point, since Proposition 3.3 (i) implies the isomorphism property and a uniform bound
of the inverse for all coefficient functions that share the same ellipticity constant and
the same L∞-bound. Thus, in our concrete situation, the norm of (−∇·σ(θ)ε∇)−1 is
completely determined by Ω ∪ ΓD and the data from Assumption 2.7 (i) and 2.7 (ii),
which gives the estimate in (4.2). By contrast, the application of Lemma 3.7 would
require to control the norm of σ(θ) in C(Ω), see also Theorem 3.23. This however
cannot be guaranteed a priori so that Proposition 3.3 (i) is indeed essential for the
proof of Theorem 4.7. Since the integrability exponent from Proposition 3.3 (i) is
in general less than 3 and therefore less than q, one needs an improved regularity in
time to have the continuous embedding in the desired Hölder space, cf. Corollary 3.20.
Therefore it is not sufficient to require s > r∗(q) and the more restrictive condition
s > r̄(q, ς) is imposed instead.

Next, we incorporate the control- and state constraints in (P) into the control
problem. For this purpose, let us introduce the set

Uad := {u ∈ L2(J ;L2(ΓN )) : 0 ≤ u ≤ umax a.e. in ΣN}. (4.3)
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Definition 4.9. We call a global control u ∈ Ug feasible, if u ∈ Uad and the
associated state satisfies S(u)(x, t) ≤ θmax(x, t) for all (x, t) ∈ Q.

While the state constraints give upper bounds on the values of feasible solutions,
lower bounds are natural in the problem and implicitly contained in (1.1)–(1.6) in
the sense that the temperature of the workpiece associated with Ω will not drop
below the minima of the surrounding temperature (represented by θl) and the initial
temperature distribution θ0.

Proposition 4.10. For every solution (θ, ϕ) in the sense of Theorem 3.13 with
maximal existence interval Jmax, we have θ(x, t) ≥ minf := min(ess infΣ θl,minΩ θ0)
for all (x, t) ∈ Ω× [T0, T•], where T• ∈ Jmax.

See Proposition A.1 in the Appendix for a proof. Analogously, we find that
u ≡ 0 is a feasible control under Assumption 2.9 (iv), the latter demanding that the
surrounding temperature and the initial temperature do not exceed the state bounds
at any point.

Corollary 4.11. The zero control u ≡ 0 is a feasible one.

Proof. By Corollary 4.5, u ≡ 0 is a global control, it obviously satifies the con-
trol constraints, and using the same reasoning as in Proposition A.1 with Assump-
tion 2.9 (iv), we obtain θu≡0 ≤ θmax.

Let us next introduce a modified control space, fitting the norm in the objective
functional in (P). So far, the controls originated from the space L2s(J ;W−1,q

ΓD
) with

s > r̄(q, ς). For the optimization, we now switch to the more advanced control space

U := W 1,2(J ;L2(ΓN )) ∩ Lp(J ;Lp(ΓN )) (4.4)

with the standard norm ‖u‖U = ‖u‖W 1,2(J;L2(ΓN )) +‖u‖Lp(J;Lp(ΓN )). Since p > 4
3q−2

by Assumption 2.9, this space continuously embeds into L2s(J ;W−1,q
ΓD

), which will
give the boundedness required in Theorem 4.7 for a bounded set in U . Moreover, this
embedding is even compact, as the following result shows:

Proposition 4.12. Let p > 2. The space U is embedded into a Hölder space
C%(J ;Lp(ΓN )) for some % > 0 and 2 < p < p+2

2 . In particular, there exists a compact

embedding E : U ↪→ Ls(J ;W−1,q
ΓD

) for every p > 4
3q − 2 and s ∈ [1,∞].

Proof. From the construction of real interpolation spaces by means of the trace
method it immediately follows that

U ↪→ C(J ; (Lp(ΓN ), L2(ΓN ) 2
p+2 ,

p+2
2

)) = C(J ;L
p+2

2 (ΓN )),

see [47, Ch. 1.8.1–1.8.3 and Ch. 1.18.4]. With similar reasoning as for (3.8), see
also [30, Lem. 3.17] and its proof, we also may show U ↪→ C%(J ; (Lp(ΓN ), L2(ΓN ))τ,1)
for all τ ∈ ( 2

2+p , 1) and some % = %(τ) > 0. Moreover,(
Lp(ΓN ), L2(ΓN )

)
τ,1

↪→
[
Lp(ΓN ), L2(ΓN )

]
τ

= Lp(ΓN )

with p = p(τ) = ( 1−τ
p + τ

2 )−1 ∈ (2, 2+p
2 ) for τ ∈ ( 2

2+p , 1), see [47, Ch. 1.10.1/3

and Ch. 1.18.4]. This means we have U ↪→ C%(J ;Lp(ΓN )) for all p ∈ (2, 2+p
2 ), with

% > 0 depending on p. If p > 2
3q, then there is an embedding Lp(ΓN )) ↪→ W−1,q

ΓD
, cf.

Remark 2.8, and this is even compact in this case as we will show below. To make
p > 3

2q possible, we need p+2
2 > 2

3q, which is equivalent to p > 4
3q − 2. Now the

vector-valued Arzelà-Ascoli Theorem, cf. [36, Thm. 3.1], yields the assertion.
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It remains to show that Lp(ΓN ) ↪→ W−1,q
ΓD

compactly for p > 2
3q, or equivalently

W 1,q′

ΓD
↪→ Lp′(ΓN ) compactly. From [39, Ch. 1.4.7, Cor. 2] and [28, Lem. 3.2] we

obtain

‖u‖Lp′ (∂Ω) ≤ C‖u‖
τ
W 1,q′‖u‖1−τLq′

for all u ∈W 1,q′

for p′ ∈ ( 2
3q
′, 2q′

3−q′ ) and τ = 3
q′ −

2
p′ . Note that τ ∈ (0, 1) for the given range of p′.

The preceding inequality implies (Lq
′
,W 1,q′)τ,1 ↪→ Lp′(∂Ω), cf. [47, Lem. 1.10.1] and

hence, due to the compact embedding W 1,q′ ↪→ Lq
′

as of [39, Ch. 1.4.6, Thm. 2],

W 1,q′ ↪→ Lp′(∂Ω) compactly for all p′ ∈ (0, 2q′

3−q′ ) by [47, Ch. 1.16.4]. With W 1,q′

ΓD
↪→

W 1,q′ and Lp′(∂Ω) ↪→ Lp′(ΓN ), this means W 1,q′

ΓD
↪→ Lp′(ΓN ) compactly for p > 2

3q.
Definition 4.13. Consider the embedding E from Proposition 4.12 with range

in L2s(J ;W−1,q
ΓD

), where s > r̄(q, ς) is the integrability exponent from the objective
functional. We set

Ug := {u ∈ U : E(u) ∈ Ug}

and define the mapping

SE := S ◦ E : Ug →W 1,s(J ;W 1,q) ∩ Ls(J ;W−1,q
∅ ).

Moreover, we define the reduced objective functional j obtained by reducing the ob-
jective functional in (P) to u, i.e.,

j(u) =
1

2

∫
E

|SE(u)(T1)− θd|2 dx+
γ

s
‖∇SE(u)‖sLs(J;Lq) +

β

2

∫
ΣN

(∂tu)2 + |u|p dω dt,

as a function on Ug. Further, let Uad := U ∩ Uad and Uad
g := Ug ∩ Uad, where Uad is

as defined in (4.3).
The following is the main result for this section:
Theorem 4.14. There exists an optimal solution ū ∈ Uad

g to the problem

min
u∈Uad

g

j(u) such that SE(u)(x, t) ≤ θmax(x, t) ∀(x, t) ∈ Q.

Proof. Thanks to the existence of the feasible control u ≡ 0, cf. Corollary 4.11,
the objective functional is bounded from below by 0. Thus there exists a minimizing
sequence of feasible controls (un) in Uad

g such that j(un) → infu∈Uad
g
j(u) in R. On

account of ∫
ΣN

(∂tu)2 + |u|p dω dt −→∞ when ‖u‖U −→∞, (4.5)

the objective functional is radially unbounded so that the minimizing sequence is
bounded in U and, due to reflexivity of U, has a weakly convergent subsequence
(again (un)), converging weakly to some ū ∈ U. As Uad is closed and convex, we
have ū ∈ Uad. By the compact embedding from Proposition 4.12, (un) converges
strongly in L2s(J ;W−1,q

ΓD
), also to ū ∈ L2s(J ;W−1,q

ΓD
). The fact that state constraints

are present and Proposition 4.10 imply that the family (θun) is uniformly bounded
in time and space for every feasible control u. Together with the gradient term in
the objective functional, Theorem 4.7 (ii) now shows that (θun) admits a subsequence
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which converges in C(Q). By Theorem 4.7 (i) in turn, this means ū ∈ Ug, hence

ū ∈ Uad
g , and SE(un) → SE(ū) in W 1,s(J ;W 1,q) ∩ Ls(J ;W−1,q

∅ ) after switching to
the appropriate subsequence, which immediately implies convergence of the first two
terms in the objective functional for this subsequence (each as n goes to infinity). The
third term, corresponding to U, is clearly continuous and convex on U and as such
weakly lower semicontinuous, hence we find

inf
u∈Uad

g

j(u) = lim
n→∞

j(un) ≥ j(ū)

and thus j(ū) = infu∈Uad
g
j(u).

Remark 4.15. In the proof of Theorem 4.14, boundedness of the minimizing se-
quence (un) in the control space U was essential and followed from the radial unbound-
edness of the objective functional as seen in (4.5). Alternatively, one could also assume
that the upper bound umax in the control constraints satisfies umax ∈ Lp(J ;Lp(ΓN ))
with p > 4

3q − 2. In this case, an objective functional of the form

1

2
‖θ(T1)− θd‖2L2(E) +

γ

s
‖∇θ‖sLs(T0,T1;Lq(Ω)) +

β

2

∫
ΣN

(∂tu)2 dω dt

is sufficient to establish the existence of a globally optimal control.
So far, we were able to show that there exists an optimal global solution to (P)

by using the properties of feasible control functions and their associated solutions to
the PDE system induced by the objective functional. In [40], we further show that
the set of global solutions Ug is in fact open and use this property to derive necessary
optimality conditions of first order for (P).

Appendix A. A “minimum principle”.
Proposition A.1. For every solution (θ, ϕ) in the sense of Theorem 3.13 with

maximal existence interval Jmax, it is true that θ(x, t) ≥ min(ess infΣ θl,minΩ θ0) for
all (x, t) ∈ Ω× [T0, T•], where T• ∈ Jmax.

Proof. We set minf := min(ess infΣ θl,minΩ θ0) and ζ(t) = θ(t) − minf and de-
compose ζ(t) into its positive and negative part, that is, ζ(t) = ζ+(t) − ζ−(t) with
both ζ+(t) and ζ−(t) being positive functions. By [12, Ch. IV, §7, Prop. 6/Rem. 12]
we then have that ζ−(t) is still an element of W 1,q for almost every t ∈ (T0, T•). In
particular, we may test (3.5) against −ζ−(t), insert θ = ζ +minf and use that minf is
constant:

−
∫

Ω

∂tζ(t)ζ−(t) dx−
∫

Ω

(η(θ(t))κ∇ζ(t)) · ∇ζ−(t) dx−
∫

Γ

αζ(t)ζ−(t) dx

= −
∫

Γ

α(θl(t)−minf)ζ
−(t)−

∫
Ω

ζ−(t)(σ(θ(t))ε∇ϕ(t)) · ∇ϕ(t) dx.

Observe that the support of products of ζ(t) and ζ−(t) is exactly the support of ζ−(t),
and ζ(t) = −ζ−(t) there. We thus obtain

1

2
∂t
∥∥ζ−(t)

∥∥2

L2 +

∫
Ω

(η(θ(t))κ∇ζ−(t)) · ∇ζ−(t) dx+

∫
Γ

αζ−(t)2 dx

= −
∫

Γ

α(θl(t)−minf)ζ
−(t)−

∫
Ω

ζ−(t)(σ(θ(t))ε∇ϕ(t)) · ∇ϕ(t) dx. (A.1)

Let us show that ∂t‖ζ−(t)‖2L2 ≤ 0. By Assumption 2.7, (η(θ(t))κ∇ζ−(t)) · ∇ζ−(t) ≥
ηκ‖∇ζ−(t)‖2R3 and −(σ(θ(t))ε∇ϕ(t)) ·∇ϕ(t) ≤ −σε‖∇ϕ(t)‖2R3 . This means that both
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integrals on the left-hand side in (A.1) are positive (since α ≥ 0), while the second
term on the right-hand side is negative. The constant minf is constructed exactly
such that θl(t) − minf is greater or equal than zero almost everywhere, such that
−α(θl(t) −minf)ζ

−(t) ≤ 0. Hence, from (A.1) it follows that ∂t‖ζ−(t)‖2L2 ≤ 0. But,
due to the construction of ζ, we have ζ(T0) ≥ 0, which means that ζ−(T0) ≡ 0 and
thus ζ−(t) ≡ 0 for all t ∈ (T0, T•).
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[2] H. Amann, Linear parabolic problems involving measures, Rev. R. Acad. Cien. Serie A. Mat.

(RACSAM), 95 (2001), pp. 85–119.
[3] H. Amann and P. Quittner, Optimal control problems with final observation governed by

explosive parabolic equations, SIAM J. Control Optim., 44 (2005), pp. 1215–1238.
[4] M. R. Sidi Ammi, Optimal control for a nonlocal parabolic problem resulting from thermistor

system, Int. J. Ecological Economics & Statistics, 9 (2007), pp. 116–122.
[5] S. N. Antontsev and M. Chipot, The thermistor problem: Existence, smoothness, uniqueness,

blowup, SIAM J. Math. Anal., 25 (1994), pp. 1128–1156.
[6] P. Auscher, N. Badr, R. Haller-Dintelmann and J. Rehberg, The square root problem for

second-order, divergence form operators with mixed boundary conditions on Lp, J. Evol.
Equ., 15 (2014), pp. 165–208.

[7] C. Bennett and R. Sharpley, Interpolation of Operators, Pure and Applied Mathematics,
vol. 129, Academic Press, Boston etc., 1988.
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[24] K. Gröger, W 1,p–estimates of solutions to evolution equations corresponding to nonsmooth

second order elliptic differential operators, Nonlinear Analysis, 18 (1992), pp. 569–577.
[25] R. Haller-Dintelmann, W. Höppner, H.-C. Kaiser, J. Rehberg and G. Ziegler, Opti-



OPTIMAL CONTROL OF THE THERMISTOR PROBLEM 25

mal elliptic Sobolev regularity near three-dimensional, multi-material Neumann vertices, J.
Funct. Anal. Appl., 48 no. 3 (2014), pp. 208-222.

[26] R. Haller-Dintelmann and J. Rehberg, Maximal parabolic regularity for divergence opera-
tors including mixed boundary conditions, J. Differ. Equations, 247 no. 5 (2009), pp. 1354–
1396.

[27] R. Haller-Dintelmann, C. Meyer, J. Rehberg and A. Schiela, Hölder continuity and
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