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Preface

These lecture notes cover topics suitable for an introductory 5 ECTS (2+1 weekly hours)
course about the theory of optimization in function spaces with applications to partial
differential equations. Students are assumed to be familiar with general principles of
functional analysis and nonlinear optimization.

The goal of the course is to give an abstract treatment of optimization problems posed
in infinite-dimensional spaces, which is—as far as time allows it—self-contained in its
presentation, giving students a theoretical background for further studies in the field of
infinite-dimensional optimization, in particular in connection with optimal control or
generally PDE-constrained problems. After completion of this course, students should
be able to identify the underlying machinery for practical problems and follow their
optimization setup or execute it themselves.

We refer to the excellent textbooks of Brezis [Br10] and Nocedal and Wright [NW06]
as well as Ulbrich and Ulbrich [UU12] for references to functional analysis and basic
PDE theory, and theory of nonlinear optimization, respectively. Topics of this course
are (partially) covered in, for example, the books of Bonnans and Shapiro [BS00],
Schirotzek [Sc07] or Hinze, Pinnau, Ulbrich and Ulbrich [HPUU09]. Cross-reading is
recommended also with Tröltzsch’s book on optimal control of PDEs [Tr10].

The notes are based on lecture notes of Michael Ulbrich (TU München), Stefan Ulbrich
(TU Darmstadt), and Christian Meyer (TU Dortmund). Comments, suggestions, and
notification of errors are welcome by eMail to meinlschmidt@math.fau.de.
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Motivation and problem setting

1 Motivation and problem setting

Modeling, optimization and numerical simulation of complex systems plays an important
role in physics, engineering, mechanics, chemistry, biology, medicine, finance, and in
many other disciplines. These models often use ordinary or partial differential equations
to describe the system, which means that the resulting optimization problems involve
generically infinite-dimensional objects such as functions, or in general quantities that
live in Banach spaces. (Thus, most often, function spaces are involved.) There is a
rising interest to solve optimization problems involving such models and there are many
fascinating applications. We give a (totally incomplete) selection of examples:

• Optimal space mission design (trajectories),

• optimal control of robot movements,

• identification of model parameters by means of measurements [→ inverse problems ],
such as:

– geological material properties from seismic measurements,

– data assimilation: initial conditions for weather and climate models from
scattered observations of all kinds (weather stations, satellite data, etc.),

– tomography

– derivation of parameters (e.g., volatility) in models for option pricing (Black
Scholes PDE) from market prices (→ mathematical finance),

• optimal control of actuators, built on the surface of an aircraft, to avoid noise
generation, material fatigue, or vortex generation,

• optimal radiation therapy planning,

• optimal design of the body of a ship,

• optimization of the shape of a wing, a turbine blade, etc.,

• optimal control of laser hardening of steel,

• optimal control of crystal pulling (heating, pulling speed),

• and many more.

The aim of this course is to develop a rigorous theory and establish methods for
infinite dimensional optimization problems. This provides the appropriate framework
for investigating and solving the above problem classes. Of course, the problems above
are of very different natures with respect to their dynamics and the rigidity with which
they need be treated. We will thus aim for a quite general problem setting in order to
encapsulate as many problems as possible, but for which we can also establish a satisfying
theory.
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Optimization with PDEs

An exemplary PDE-constrained problem could look like this:

Example. The following is an optimal boundary control problem for a semilinear
elliptic equation:

min
y : Ω→R
u : ∂Ω→R

1

2

∫
Ω

(
y(x)− yd(x)

)2
dx+

α

2

∫
∂Ω

u(x)2 dHn−1(x)

s.t.


−∆y + y3 = 0 on Ω,

∂y

∂ν
+ y = u on ∂Ω,

a ≤ u ≤ b on ∂Ω,

for example arising from (stationary) nonlinear heat transfer. The goal is to find an
ambient temperature u such that the temperature profile y in Ω ⊂ Rn (e.g., a work
piece) is as close as possible to a given desired temperature profile yd in an average
sense. Thereby, the ambient temperature must stay between bound functions a and
b which represent e.g. physical or process-related limitations, and a trade-off between
optimization accuracy and heating cost is possible by the parameter α.

We will come back to this example later. The fundamental (theoretical) questions which
we consider in this lecture with respect to infinite-dimensional optimization problems
such as the one above are as follows:

• Is the problem well posed to begin with, that is: does the problem admit an optimal
solution at all, and in which function class?

• If it does admit an optimal solution, can we characterize these? This means, under
which condition are there necessary and sufficient optimality conditions of e.g. first
and second order?

The latter optimality conditions are also a very useful starting point for numerical
algorithms to find an optimal solution.

1.1 Problem setting

The fundamental general problem class is given by

min
x∈X

f(x) s.t. G(x) ∈ K, (P)

with the feasible set (zulässige Menge)

F :=
{
x ∈ X : G(x) ∈ K

}
:= G−1

[
K
]
.

We pose the following fundamental assumptions on the data in (P):
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Problem setting

Assumption 1.1 (Problem data). The following properties of the data in (P) are
valid:

(a) G : X → Z is a continuous mapping between real Banach spaces,

(b) K ⊆ Z is a closed convex set,

(c) f : X → R is a lower semicontinuous objective function,

(d) the feasible set F is nonempty.

In (P) we thus minimize with respect to the linear space X; additional constraints on the
variable x are realized by the constraint G(x) ∈ K. Note that F is closed in X under
Assumption 1.1 since G is continuous and K is closed. Let us moreover briefly recall the
notion of lower semicontinuity.

Reminder: We say that the function f : X → R is lower semicontinuous
(unterhalbstetig) if for all x ∈ X and all sequences (xk) ⊂ X there holds

xk → x =⇒ lim inf
k→∞

f(xk) ≥ f(x), (1.1)

or, equivalently, if the level set Nf(α) := {x ∈ X : f(x) ≤ α} (Niveaumenge) is
sequentially closed for all α ∈ R.

Of course, a continuous function is also lower semicontinuous. Moreover, lower semicontinuity
can also be defined for functions f : S → R defined on a proper subset S ⊊ X. One then
considers sequences S ∋ xk → x ∈ S. The equivalent definition via level sets however
requires that S is closed.

The compact notation (P) includes essentially all relevant situations which occur in
particular problems. The two most common variations are the following:

1. The total problem

min
x∈X

f(x) s.t. E(x) = 0, F (x) ∈ C, x ∈M,

where the continuous mappings E : X → Z1 and F : X → Z2 take their values in
Banach spaces Z1 and Z2, the set C ⊆ Z2 is a closed convex cone, and M ⊆ X
is a closed convex set. This is a problem of type (P) for Z = Z1 × Z2 × X and
K = {0Z1} × C ×M with G(x) := (E(x), F (x), x).

Reminder: Recall that a set C is called cone if from x ∈ C it follows that λx ∈ C
for all λ > 0.
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Optimization with PDEs

2. In the total problem as above, the variable x often has two components x = (y, u) ∈
X = Y × U , with u being a control (Steuerung), design or parameter within the
system, and y being the associated state (Zustand) of the system. They are linked
by the system dynamics (usually: the differential equations) described abstractly
by E(y, u) = 0. The set M is then also decoupled intoM =My×Mu withMy ⊆ Y
and Mu ⊆ U . Problems of this particular structure are called optimal control
problems.

In this context, one often encounters optimal control problems in reduced form (as
opposed to the total problem above), that is,

min
u∈U

j(u) s.t. H(u) ∈ C, u ∈ Uad.

These are obtained from the total optimal control problem by eliminating the state
equation E(y, u) = 0. This is done by showing that for each u there exists a unique
state y = y(u) such that E(y(u), u) = 0, and inserting the so-called control-to-state
operator (Steuerungs-Zustands-Operator) y(u) for y, that is,

j(u) := f(y(u), u), H(u) := F (y(u), u), Uad :=Mu ∩ y−1[My]

where M = My ×Mu ⊆ Y × U . Of course, the state equation E(y(u), u) = 0 is
then superfluous because it is always satisfied by construction. Such a reduced
problem is of formally easier nature, but with (much) more involved functions j,H
due to the control-to-state operator u 7→ y(u).

Remark 1.2. The conditions F (x) ∈ C or H(u) ∈ C with C denoting a closed
convex cone can be interpreted to describe abstract inequality constraints. If for
instance Z2 = Rm and C = (−∞, 0]m, then the constraint F (x) ∈ C is the same as
F (x) ≤ 0 (component-wise), which corresponds to the standard inequality constraints
in nonlinear programming. Note that there is an order structure on C in this case.
This additional structure is quite helpful in several situations. We will come back to
this later.

Remark 1.3. (a) As in Assumption 1.1, we will always assume all occurring
Banach spaces to be real in the following, even if it is not mentioned explicitly.

(b) Over the course of this lecture, we will also consider first order necessary
optimality conditions for problems of type (P). Differentiability assumptions
on f and G will then be stated as required.

October 19, 2022

1 −→

4



Existence of Solutions

2 Existence of Solutions

We first discuss the question of existence of solutions to the problem (P). The easiest
case is that of a compact feasible set.

Theorem 2.1. Consider (P) and let Assumption 1.1 be satisfied. Assume further that
there exist a sequentially precompact set C ⊆ F and x0 ∈ C such that f(x) ≥ f(x0)
for all x ∈ F \ C. Then (P) possesses a global solution.

Proof. By assumption, no point in F \ C provides a lower objective function value than
x0 ∈ C. Hence, we can restrict our search for the minimum on the set C, which is
sequentially precompact and nonempty. Now, consider a minimizing sequence (xk) ⊂ C
satisfying f(xk) → f ∗ := infx∈F f(x). Due to sequential precompactness of C, there
exists a subsequence, again denoted by (xk), that converges to a limit x̄. The feasible set
F is closed, hence there holds x̄ ∈ F . Now, since f is lower semicontinuous, we have

f ∗ = lim
k→∞

f(xk) = lim inf
k→∞

f(xk) ≥ f(x̄)

and thus x̄ ∈ F is a solution of (P).

Remark 2.2. Note that if F is already compact itself, then the choice C = F is
perfectly valid in the foregoing theorem.

In infinite-dimensional spaces, compactness is a strong requirement, often: too strong.
Recall that the closed unit ball BX(0) in a Banach space X is compact if and only if X is
finite-dimensional! On the other hand, weak sequential compactness is often verifiable.

Reminder: We recall that (xk) converges weakly to x in X, written xk ⇀ x, iff

x′(xk) =: ⟨x′, xk⟩ → ⟨x′, x⟩ := x′(x) for all x′ ∈ X∗,

where X∗ = L(X;R) is the space of continuous linear functionals on X. A set M is
weakly sequentially compact (schwach folgenkompakt) if every sequence (xk) ⊂M
admits a weakly convergent subsequence whose limit is again in M , and a function
f : X → R is weakly lower semicontinuous if xk ⇀ x implies lim infk→∞ f(xk) ≥ f(x).

We now want to replace the compactness requirement in Theorem 2.1 by weak sequential
compactness. This works particularly well in reflexive Banach spaces, since these are
precisely the ones for which the closed unit ball BX(0) is weakly sequentially compact.
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Reminder: A Banach space X is said to be reflexive if the canonical injection

J : X → (X∗)∗ := X∗∗, ⟨Jx, x′⟩ := ⟨x′, x⟩ for all x′ ∈ X∗

is surjective (and thus a bijection).

We need the following facts from functional analysis:

Proposition 2.3 (See [Br10, Ch. 3]). Let X be a Banach space.

(a) Every closed convex subset of X is weakly sequentially closed.

(b) The space X is reflexive if and only if every bounded sequence contains a weakly
convergent subsequence.

(c) If f : X → R is convex and lower semicontinuous, then f is also weakly lower
semicontinuous.

(d) Any weakly convergent sequence in X is bounded.

Together, the first and second statement in Proposition 2.3 in particular imply that the
closed unit ball BX(0) in a reflexive Banach space X is weakly sequentially compact.

Note moreover that the third assertion is derived from the first since every level set
Nf(α) of f is convex (convexity of f) and closed (lower semicontinuity) and thus
also weakly closed, hence weakly sequentially closed. Therefore, f is weakly lower
semicontinuous. A prime example of a weakly lower semicontinuous function is the norm
function x 7→ ∥x∥X .

The most commonly encountered reflexive Banach space class are Hilbert spaces. Also
important, but for p ̸= 2 non-Hilbert, are the Lebesgue spaces Lp for 1 < p <∞—L1 and
L∞ are not reflexive on nontrivial measure spaces—and the associated Sobolev spaces
W k,p, where k ∈ N. The fact that these spaces are reflexive plays a huge role in their
prevalence in functional analytic methods for PDEs and will also become extremely
helpful in the context of optimization theory as we develop in this lecture.

We obtain the following existence result for (P):

Theorem 2.4. Consider (P) and let the following assumptions be satisfied:

(a) G : X → Z is weakly sequentially continuous from the reflexive Banach space
X to the Banach space Z, i.e., if xk ⇀ x in X, then G(xk)⇀ G(x) in Z,

(b) f : X → R is weakly lower semicontinuous,

(c) K ⊆ Z is closed and convex,
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Existence of Solutions

(d) there exist a bounded set C ⊆ F and x0 ∈ C such that f(x) ≥ f(x0) for all
x ∈ F \ C.

Then the problem (P) possesses a global solution.

Proof. By assumption, analogously to the proof of Theorem 2.1, there exists a minimizing
sequence (xk) ⊂ C with f(xk) → f ∗ := infx∈F f(x). Since C is bounded andX is reflexive,
there exists a subsequence, again denoted by (xk), that converges weakly to a limit x̄ ∈ X.
Therefore, by weak sequential continuity, G(xk)⇀ G(x̄) in Z. The closed convex set K
is weakly closed in Z, and thus K ∋ G(xk) ⇀ G(x̄) ∈ K. We conclude x̄ ∈ F . Now,
since f : X → R is weakly lower semicontinuous, we obtain

f ∗ = lim
k→∞

f(xk) = lim inf
k→∞

f(xk) ≥ f(x̄).

and hence x̄ ∈ F is a solution of (P).

Remark 2.5. Inspecting the proof of Theorem 2.4, one observes that we could have
replaced the assumptions on G and K by the general assumption that F be weakly
closed. As seen in the proof, the assumptions posed are in fact sufficient for F to be
weakly closed. Sometimes it is more convenient to show this more general condition.

Of course, Remark 2.2 applies again for Theorem 2.4. We note that weak continuity, as
assumed for G in Theorem 2.4, is a delicate topic when nonlinear functions are involved.
Generally, it is only to be expected to hold if the mapping under consideration is in fact
(affine-) linear and continuous (see the exercises), or if there is compactness involved.

Reminder: A continuous linear operator A ∈ L(X;Y ) between Banach spaces X
and Y is said to be compact if it maps bounded sets in X to precompact sets in Y .

Compactness is a very useful technique to transfer properties for the weak topology to
properties for the norm topology, as the following lemma demonstrates.

Lemma 2.6. Let A ∈ L(X;Y ) be a compact linear operator between the Banach
spaces X and Y . If (xk) ⊂ X converges weakly to x in X, then (Axk) ⊂ Y converges
strongly to Ax in Y .

Proof. Note first that weak convergence xk ⇀ x in X also implies Axk ⇀ Ax in Y
(why?).

Assume that (Axk) does not converge in norm to Ax in Y . Then there is a sufficiently
small neighborhood U of Ax in Y and a subsequence (Axkℓ)ℓ such that Axkℓ /∈ U for all
ℓ ∈ N.
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On the other hand, the weakly convergent sequence (xk) is bounded in X, hence (Axk) is
a precompact set in Y . In particular, the sequence (Axkℓ)ℓ must admit a norm convergent
subsequence, still denoted by (Axkℓ)ℓ. Denoting the limit of that subsequence by y,
we must have y ̸= Ax by construction. But then the sequence (Axkℓ)ℓ also converges
weakly to y ̸= Ax. Since (Axkℓ)ℓ is a subsequence of (Axk), this is a contradiction to
Axk ⇀ Ax.

The ansatz to transfer properties for the weak topology to the norm topology is most
often used for embeddings.

Reminder: A Banach space X is said to be embedded (eingebettet) into another
Banach space X0 if there exists a continuous linear injective operator i : X → X0, the
embedding, and we write X ↪→ X0 in this case.

Since an embedding i : X → X0 is by definition injective, it is often most useful to
identify X with its image i(X) ⊂ X0. In most cases, the embedding operator i is in fact
given by the identity mapping i = id: X → X0. In this case, we usually do not refer to i
explicitly. (It is sometimes reasonable to do so, however.)

Definition 2.7. A Banach space X is compactly embedded in the Banach space
X0 if X ↪→ X0 and every bounded sequence in X contains a (strongly) convergent
subsequence in X0. Equivalently, the embedding operator i is a compact linear
operator from X to X0.

Corollary 2.8. If the Banach space X is compactly embedded in the Banach space
X0, then every weakly convergent sequence (xk) with limit x in X is norm convergent
to the same limit in X0 up to identification of X with i(X) ⊂ X0.

Proof. Apply Lemma 2.6 to the embedding operator i : X → X0.

Using the foregoing corollary, we observe that by combining compactness and continuity
properties for the norm topology, we can generate continuity properties for the weak
topology. In the context of Theorem 2.4, we have in particular:

• If the embedding X ↪→ X0 is compact and f0 : X0 → R is lower semicontinuous,
then f := (f0 ◦ i) : X → R is weakly lower semicontinuous.

In fact, xk ⇀ x in X implies i(xk) → i(x) in X0 and lim infk→∞ f0(i(xk)) ≥ f0(i(x)).
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Existence of Solutions

• If the embedding X ↪→ X0 is compact and G0 : X0 → Z is sequentially continuous
from the norm topology of X0 to the weak topology of Z (strong-weak continuous),
then G := (G0 ◦ i) is weakly sequentially continuous from X to Z.

This follows from

xk ⇀ x in X =⇒ i(xk) → i(x) in X0 =⇒ G0(i(xk))⇀ G0(i(x)) in Z.

October 26, 2022
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Example

We pick up the example for an optimal control problem from the introduction, to which
we wish to apply the above existence theory.

Example 2.9. Consider the following optimal boundary control problem for a
semilinear elliptic equation:

min
y : Ω→R
u : ∂Ω→R

J(y, u) :=
1

2
∥y − yd∥2L2(Ω) +

α

2
∥u∥2L2(∂Ω)

s.t.


−∆y + y3 = 0 on Ω,

∂y

∂ν
+ y = u on ∂Ω,

a ≤ u ≤ b on ∂Ω,

where Ω ⊂ Rn, for n = 2 or n = 3, is an open and bounded Lipschitz domain,
yd ∈ L2(Ω), α ≥ 0, and, with the surface measure ω on ∂Ω,

a, b ∈ L2(∂Ω) with a ≤ b ω-a.e. in ∂Ω.

Let U = L2(∂Ω) and Y = H1(Ω), and

Uad =
{
u ∈ U : a ≤ u ≤ b ω-a.e. in ∂Ω

}
.

We consider weak solutions of the state equation encoded in E(y, u) = 0, i.e.,

E : Y × U → Y ∗,〈
E(y, u), v

〉
Y ∗,Y

:= (∇y,∇v)L2(Ω)n + (y3, v)L2(Ω) + (y − u, v)L2(∂Ω) for all v ∈ Y.

This formulation is obtained by testing (that is, multiplying and integrating) the PDE
with v ∈ H1(Ω) = Y and integrating by parts. Note that, by Sobolev embeddings,
we have H1(Ω) ↪→ L6(Ω) for n ≤ 3 and thus y3 ∈ L2(Ω). Moreover, for w ∈ H1(Ω)

9
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there is a well defined notion of the restriction w|∂Ω ∈ L2(∂Ω) and w 7→ w|∂Ω is
continuous between these spaces. (Why is this mapping not an embedding?)

One can show that for each u ∈ U , the state equation possesses a unique solution
y(u) ∈ Y . This defines the control-to-state operator U ∋ u 7→ y(u) ∈ Y . Furthermore,
there holds

∥y(u)∥H1(Ω) = ∥y(u)∥Y ≤ C∥u∥U = ∥u∥L2(∂Ω). (2.1)

with a constant C > 0 independent of u. The estimate (2.1) follows by choosing
v = y(u) in the weak formulation, which gives:

∥∇y∥2L2(Ω)n + ∥y∥4L4(Ω) + ∥y∥2L2(∂Ω) = (u, y)L2(∂Ω) ≤ ∥u∥L2(∂Ω)∥y∥L2(∂Ω)

≤ 1

2
∥u∥2L2(∂Ω) +

1

2
∥y∥2L2(∂Ω).

By the generalized Friedrichs’ inequality, there holds

∥y∥2L2(Ω) ≤ C(Ω)
[
∥∇y∥2L2(Ω)n + ∥y∥2L2(∂Ω)

]
(2.2)

with a constant C(Ω) independent of y, from which now (2.1) follows. (Work this
out!)

In the terminology of (P), we put

X = Y × U, Z = Y ∗ × U, K = {0Y ∗} × Uad,

with G(y, u) := (E(y, u), u) and f := J . We verify the requirements of Theorem 2.4
to show that there exists an optimal solution pair (y, u) ∈ X = H1(Ω) × L2(∂Ω).
There holds:

(a) The mapping E : Y × U → Y ∗ is weakly sequentially continuous:

In fact, the operator (y, u) 7→ E(y, u) − (y3, ·)L2(Ω) is linear and continuous
from Y × U to Y ∗, hence weakly sequentially continuous. (Work this out!) It
thus remains to show that Y ∋ y 7→ (y3, ·)L2(Ω) ∈ Y ∗ is weakly sequentially
continuous.

Firstly, Y = H1(Ω) is compactly embedded into L5(Ω) for n = 2, 3. Further,
the function φ(t) := t3 clearly satisfies

|φ(t)| = |t|3 = |t|
5

( 53 ) ,

such that the superposition operator y 7→ y3 is continuous from L5(Ω) to

L
5
3 (Ω). (Exercises!) Further, since Y = H1(Ω) ↪→ L

5
2 (Ω) densely, we also

have the adjoint embedding (L
5
2 (Ω))∗ = L

5
3 (Ω) ↪→ Y ∗. By Corollary 2.8 and

the following factorization diagram, this means that the mapping Y ∋ y 7→

10



Existence of Solutions

(y3, ·)L2(Ω) ∈ Y ∗ is sequentially continuous from the weak topology on Y to the
norm topology on Y ∗:

Y
id−−−−−−→

compact
L5(Ω)

y 7→ y3−−−−−−−→
continuous

L
5
3 (Ω)

↪→−−−−−−−→
continuous

Y ∗

The second component of G is the identity id on U and as such obviously
weakly sequentially continuous. Overall, G is weakly sequentially continuous
from Y × U to Y ∗ × U .

(b) The function J is convex and continuous on Y × U , hence weakly lower
semicontinuous by Proposition 2.3 (c). (Here note that Y = H1(Ω) ↪→ L2(Ω)
and that the norm on a Banach space is convex and by definition continuous.)

(c) Uad ⊂ U is bounded, closed and convex.

(d) The feasible set F = {(y, u) ∈ Y × U : E(y, u) = 0, u ∈ Uad} is nonempty and
bounded:

Since Uad is bounded, the set F is also bounded by (2.1). Further, (y(a), a) ∈ F .

Thus, the assumptions of Theorem 2.4 are verified and there exists a globally optimal
solution to the semilinear optimal boundary control problem.

From the foregoing example it should become clear that the functional-analytic setup
for (P) plays a decisive role in whether the problem has a globally optimal solution or not.
(See also the exercises.) This is a general paradigm in the theory of infinite-dimensional
optimization problems and in particular in the context of PDE-constrained optimization
where this paradigm connects in a natural way with the concept of weak or strong
solutions to PDEs.

The elephant in the room

As mentioned before, (P) is in general an infinite-dimensional optimization problem. In
particular, the searched-for variable x is an object of infinite dimension. As such, we can
generally not represent it exactly on a computer, which will at some point prove to be
a problem when a practical problem instance of (P) need be solved numerically. One
could thus reasonably pose the question why one has to suffer through the complicated
reasoning for infinite-dimensional optimization problems at all.

In fact, what would probably happen for a numerical implementation is that one would
employ finite-dimensional approximations Xn and Zn of dimension n of the occurring
Banach spaces and the associated discretizations Gn and fn of the constraint function
(in particular, the differential equations) and the objective function. Then one would
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Optimization with PDEs

solve the resulting finite-dimensional optimization problems

min
x∈Xn

fn(x) s.t. Gn(x) ∈ Kn, (Pn)

numerically with ones favorite algorithm from classical Nonlinear Optimization, repeatedly
with increasing discretization accuracy, so n→ ∞. Since the underlying problems are
then posed in finite-dimensional space, one could avoid the delicate mathematical issues
arising for infinite-dimensional problems in order to deal with (Pn). This ansatz is
nowadays summarized by “first-discretize-then-optimize”.

However, it turns out that in general it is not a good idea to ignore the infinite-dimensional
original problem (P). Indeed, already in order to argue that the solutions obtained for (Pn)
are really a good approximation for a “true” solution to (P), one at least needs to know
that such a solution exists, and in what function space norm sense we can hope for an
approximation at all. (It can very well happen that the family (Pn) admits optimal
solutions but (P) will not!)

Another problem is that with increasing discretization accuracy, and thus increasing space
dimension n, the numerical algorithms used to solve (Pn) can become very inefficient
and slow. It is usually preferable to determine an optimization algorithm in the infinite-
dimensional setting and then pass to an appropriate discretization of this in each step.
This would be “first-optimize-then-discretize”. For example, for some algorithms derived
in such a way, one can show that they will perform in a certain sense independent of
the discretization accuracy and are thus extremely effective. Such algorithms are usually
based on a so-called first-order optimality system for (P), the derivation of which is the
subject of the next section which will occupy us until nearly the end of the course.

In this sense, although it may not seem so from the start, it is in fact of actual practical
importance to deal with the full infinite-dimensional optimization problem (P) in order
to derive efficient algorithms and appropriate approximation properties for numerical
implementations. We also refer to the course “Numerik optimaler Steuerungen” which is
planned for the coming summer term 2023.

November 2, 2022

3 −→

3 Optimality conditions

We now turn to optimality conditions for the general problem (P), both of first order
necessary– and second order sufficient type. These will be conditions which characterize
optimal solutions of (P). Since (P) is in general a nonconvex problem, there will
be possibly multiple local solutions which are not necessarily also global ones. (The
techniques in the previous section yield existence of a globally optimal solution, though!)
We can in general only expect characterizations of local solutions of (P).

12
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Reminder: A local solution x̄ to an optimization problem min f(x) such that x ∈M
is characterized by the existence of an ε > 0 such that x̄ is a global solution to the
localized problem min f(x) with the constraint x ∈M ∩B(x̄, ε).

Before we begin with the actual definitions and statements leading to optimality
conditions, we recall and define some concepts which will be needed in the following.
Firstly, from the name first or second order optimality conditions, it is clear that
derivatives will play a decisive role from now on.

Definition 3.1 (Differentiability). Let X, Y be Banach spaces and let F : X ⊇ U →
Y be an operator between X and Y defined on an open subset U ̸= ∅ of X.

(a) We say that F is directionally differentiable (richtungsdifferenzierbar) at
x ∈ U if the limit

dF (x, h) = lim
t↘0

F (x+ th)− F (x)

t
∈ Y

exists for all h ∈ X. In this case, dF (x, h) is called directional derivative of F
at x in the direction h.

(b) Moreover, F is called Gâteaux differentiable (G-differentiable) at x ∈ U if F is
directionally differentiable at x and the directional derivative as a function in
h, so X ∋ h 7→ dF (x, h) ∈ Y , is bounded and linear, i.e., it is given by a linear
operator A ∈ L(X;Y ) for which we set F ′(x) := A.

(c) Finally, we say that F is Fréchet differentiable (F-differentiable) at x ∈ U if F
is Gâteaux differentiable at x and the following approximation condition holds:∥∥F (x+ h)− F (x)− F ′(x)h

∥∥
Y
= o
(
∥h∥X

)
for h→ 0 in X.

(d) If F is directionally-/G-/F-differentiable at every x ∈ V for V ⊆ U open, then
F is called directionally-/G-/F-differentiable on V .

(e) If F is G- or F-differentiable on a neighborhood of x ∈ U and the derivative
mapping X ∋ x 7→ F ′(x) ∈ L(X;Y ) is continuous, then we say that F is
continuously G-/F-differentiable.

13
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Reminder: The o notation in the definition of F-differentiability means that

lim
h→0

∥∥F (x+ h)− F (x)− F ′(x)h
∥∥
Y

∥h∥X
= 0,

so, when h→ 0 in X, then the linear approximation error
∥∥F (x+h)−F (x)−F ′(x)h∥∥

Y
goes to zero much faster than ∥h∥X . In this context, it is also useful to observe that
the approximation condition determines the derivative uniquely; that is, if some linear
operator A ∈ L(X;Y ) satisfies∥∥F (x+ h)− F (x)− Ah

∥∥
Y
= o
(
∥h∥X

)
for h→ 0 in X,

then it already follows that F ′(x) = A.

Example 3.2. Classical examples and counterexamples for differentiable mappings
in Banach spaces include (see the exercises):

(a) Every continuous linear function F (x) = Ax defined by a bounded linear
operator A ∈ L(X;Y ) is continuously F-differentiable and its derivative in
every point x ∈ X is given by F ′(x) = A; in particular, F ′(x)h = F (h).

(b) The quadratic formX ∋ u 7→ 1
2
a(u, u) ∈ R induced by a (symmetric) continuous

bilinear form a : X ×X → R is continuously F -differentiable and its derivative
in u ∈ X is given by h 7→ a(u, h).

(c) The superposition operator given by sin : R → R is continuously F-differentiable
as a mapping from L∞(0, 1) into itself with the derivative L∞(0, 1) ∋ h 7→
cos(f)h in f ∈ L∞(0, 1). The operator is not F-differentiable as a mapping
from Lp(0, 1) into itself for any 1 ≤ p <∞.

(d) The superposition operator given by the real function t 7→ |t|3 is continuously
F-differentiable as a mapping from L6(Ω) to L2(Ω) with the derivative L6(Ω) ∋
h 7→ 3y2h in y ∈ L6(Ω). (Here Ω ⊆ Rn is a nonempty measurable set.)

By imitating the proof for the finite-dimensional case, many classical formulas as the
following are easily established. (Work this out!)

Proposition 3.3. Let X, Y and Z be Banach spaces.

(a) If F,G : X → Y are (continuously) F-differentiable, then so are αF + βG for
every α, β ∈ R and (αF + βG)′ = αF ′ + βG′.

(b) If F : X → Y and G : Y → Z are (continuously) F-differentiable in x ∈ X and
F (x) ∈ Y , respectively, then G ◦ F is (continuously) F-differentiable in x and

14
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its derivative is given by(
G ◦ F

)′
(x) = G′

(
F (x)

)
◦ F ′(x) ∈ L(X;Z),

where the latter means that (G ◦ F )′(x)h is given by the application of the
operator G′(F (x)) ∈ L(Y ;Z) to F ′(x)h ∈ Y for every h ∈ X.

Example 3.4 (PDE Operator). Consider the mapping H1(Ω)× L2(∂Ω) ∋ (y, u) 7→
E(y, u) ∈ H1(Ω)∗ corresponding to the weak formulation of the semilinear problem
as posed in Example 2.9, that is,〈

E(y, u), v
〉
:= (∇y,∇v)L2(Ω)n + (y3, v)L2(Ω) + (y − u, v)L2(∂Ω) for all v ∈ H1(Ω).

As observed in Example 2.9, (y, u) = x 7→ F (x) := E(y, u)− (y3, ·)L2(Ω) is a linear
and continuous mapping H1(Ω)×L2(∂Ω) → H1(Ω)∗. According to Example 3.2, it is
thus continuously F-differentiable with the derivative F ′(x)h = F (h). Moreover, the
superposition operator y 7→ y3 is continuously F-differentiable from L6(Ω) to L2(Ω)
as noted in Example 3.2. Accordingly, y 7→ (y3, ·)L2(Ω) is continuously F-differentiable
H1(Ω) → H1(Ω)∗ since it factors into

H1(Ω)
id−−−−−−−→

cont. linear
L6(Ω)

y 7→ y3−−−−−−−→
continuous

L2(Ω)
z 7→(z,·)L2(Ω)−−−−−−−→
cont. linear

H1(Ω)∗.

Here we use a chain rule as in Proposition 3.3. Altogether this yields that E is
continuously F-differentiable with E ′(y, u) ∈ L(H1(Ω)× L2(∂Ω);H1(Ω)∗) given by

E ′(y, u)(z, h) :
[
v 7→ (∇z,∇v)L2(Ω)n + (z − h, v)L2(∂Ω) + 3(y2z, v)L2(Ω)

]
∈ H1(Ω)∗.

The partial derivatives of E are given by E ′y(y, u) ∈ L(H1(Ω);H1(Ω)∗),

E ′y(y, u)z :
[
v 7→ (∇z,∇v)L2(Ω)n + (z, v)L2(∂Ω) + 3(y2z, v)L2(Ω)

]
∈ H1(Ω)∗

and E ′u(y, u) ∈ L(L2(∂Ω);H1(Ω)∗),

E ′u(y, u)h :
[
v 7→ −(h, v)L2(∂Ω)

]
∈ H1(Ω)∗

In particular, the linearized operator E ′y(y, u) ∈ L(H1(Ω);H1(Ω)∗) and the equation
E ′y(y, u)z = w give rise to the weak formulation of the linear PDE

−∆z + 3y2z = f on Ω,

∂z

∂ν
+ z = g on ∂Ω

15
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for the functional w ∈ H1(Ω)∗ defined by

⟨w, v⟩ :=
∫
Ω

f(x)v(x) dx+

∫
∂Ω

g(x)v(x) dω(x).

A main goal of this chapter is to ultimately derive conditions under which, given a local
solution x̄ of (P), a so-called Lagrange multiplier (associated to x̄) λ̄ ∈ Z∗ exists. The
generic tools to prove existence of functionals in a dual space such as Z∗ are separation
theorems which we will use quite frequently. (Such arguments are also used in the finite-
dimensional case for Nonlinear Optimization, or even already in Linear Programming,
usually in so-called Farkas lemmas.) We thus recall the geometric, or separation, versions
of the fundamental Hahn-Banach theorem [Br10, Ch. 1.2].

Reminder: For two subset A,B ⊂ X of a Banach spaceX, we say that the hyperplane

H =
[
f = α

]
:=
{
x ∈ X : ⟨f, x⟩ = α

}
induced by 0 ̸= f ∈ X∗ and α ∈ R separates (trennt) A and B if ⟨f, x⟩ ≤ α for all
x ∈ A and ⟨f, x⟩ ≥ α for all x ∈ B. We say the hyperplane H strictly separates A and
B if there exists ε > 0 such that ⟨f, x⟩ ≤ α− ε for all x ∈ A and ⟨f, x⟩ ≥ α+ ε for all
x ∈ B.

Proposition 3.5 (Hahn-Banach, geometric form). Let X be a Banach space and let
A,B ⊂ X be two nonempty convex subsets such that A ∩B = ∅.

(a) Assume that A or B is open. Then there exists a hyperplane separating A and
B.

(b) Assume that A is closed and that B is compact. Then there exists a hyperplane
strictly separating A and B.

A general class of first order necessary optimality conditions is obtained by observing
that the Fréchet derivative at a local solution x̄ is nonnegative along all directions
that are tangential to the feasible set or point into the feasible set. These directions
are characterized by the tangent cone (Tangentialkegel) of the feasible set at the
solution.

Definition 3.6 (Tangent cone). The Bouligand tangent cone (or contingent cone)
of a set M ⊆ X, where X is a Banach space, at x ∈M is defined by

T (M,x) =
{
d ∈ X : ∃ (xk) ⊆M, xk → x, (ηk) > 0: ηk(xk − x) → d

}
.
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The set T (M,x) is a closed cone for every x ∈M .

November 09, 2022

←− 4
See the exercises for the proof that T (M,x) is closed. In the case when M is convex,
a—possibly—more intuitive description of T (M,x) can be derived using the conical hull.
This description relies on the idea that we are interested in all directions which point into
the feasible set. We need two more notions, which are however of independent interest
and will be used frequently in the following.

Reminder: Recall that the Minkowski sum of two sets A,B ⊂ X is given by

A+B :=
{
a+ b : a ∈ A, b ∈ B

}
with the convention a+B := {a}+B, allowing to write the Minkowski difference as

A−B :=
{
c ∈ X : c+B ⊆ A

}
.

Definition 3.7 (Conical hull, cone of radial directions). Let X be a vector space and
let ∅ ≠ A ⊆ X be convex. Then the conical hull (konische Hülle) of A is given by

cone(A) :=
{
λy : y ∈ A, λ > 0

}
.

It is the smallest cone which includes the set A. More generally, the cone of radial
directions of A in a point x ∈ X is given by

cone(A, x) := cone(A− x) =
{
z ∈ X : z = λ(y − x), y ∈ A, λ > 0

}
.

It is the smallest cone C such that A ⊆ x+ C. See also Figure 1.

A
x

cone(A)
x+ cone(A, x)

Figure 1: Conical hull of A and cone of radial directions of A at x

17
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Lemma 3.8. Let M ⊆ X be convex and x ∈M , then

T (M,x) = cone(M,x).

Moreover, cone(M,x) and thus T (M,x) are convex.

Proof. Let d ∈ T (M,x). Then there exist (xk) ⊂ M with xk → x and (ηk) > 0 with
dk := ηk(xk − x) → d. By definition, (dk) ⊂ cone(M,x). (Set y = xk and λ = ηk for each
k.) Hence, limk→∞ dk = d ∈ cone(M,x).

Conversely, to prove cone(M,x) ⊂ T (M,x) it is sufficient to prove cone(M,x) ⊂ T (M,x)
since T (M,x) is closed. To this end, consider any d ∈ cone(M,x). Then there exist
λ > 0 and y ∈M with d = λ(y−x). Now set ηk := kλ and xk := x+(y−x)/k for k ≥ 1.
Then xk ∈M by convexity of M and xk → x. Further, ηk(xk − x) = λ(y − x) = d. This
shows d ∈ T (M,x).

We lastly show that if M is convex, then so is cone(M,x). Since the closure of convex
sets is convex (why?), this implies that T (M,x) is convex, too. Let d1, d2 ∈ cone(M,x),
i.e., for i = 1, 2, there are λi > 0 and yi ∈ M such that di = λi(yi − x). Then, for
α ∈ (0, 1), we have

(1− α)d1 + αd2 =
(
(1− α)λ1 + αλ2

)( (1−α)λ1
(1−α)λ1+αλ2y1 +

αλ2
(1−α)λ1+αλ2y2 − x

)
.

Since M is assumed to be convex, (1− α)d1 + αd2 ∈ cone(M,x) follows.

As apparent from the proof, the inclusion T (M,x) ⊆ cone(M,x) is always true, independent
of convexity of M . (Think of nonconvex set M where cone(M,x) ̸⊆ T (M,x)!)

We now can state a first order optimality condition.

Theorem 3.9. Let f : U → R be defined on an open neighborhood U of the set
M ⊆ X, where X is a Banach space. Let x̄ ∈ M be a local minimizer of f on M ,
i.e., a local solution of minx∈M f(x) and assume that f is F-differentiable at x̄. Then
there holds

⟨f ′(x̄), d⟩X∗,X ≥ 0 for all d ∈ T (M, x̄). (3.1)

Proof. For all d ∈ T (M, x̄) there exist sequences (xk) ⊆ M and (ηk) > 0 such that
xk → x̄ and ηk(xk − x̄) → d.

We then have ηko
(
∥xk − x̄∥X

)
→ 0. Now, for sufficiently large k, there holds f(xk) ≥ f(x̄)

since x̄ was a local minimum, and thus

⟨f ′(x̄), d⟩ = lim
k→∞

ηk⟨f ′(x̄), xk − x̄⟩ = lim
k→∞

[
ηk
(
f(xk)− f(x̄)

)
+ ηko

(
∥xk − x̄∥X

)]
≥ lim

k→∞
ηko
(
∥xk − x̄∥X

)
= 0.
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Remark 3.10. Note that if x is an interior point of M—in particular, if M = X—,
then T (M, x̄) = X, and the foregoing optimality condition becomes f ′(x̄) = 0 (work
this out!). This is the well known classical stationarity condition which one already
learns in high school.

We are interested in applying this result to the problem (P), i.e., with M = F . However,
the cone T (F , x̄) is difficult and often impossible to compute in practice. Hence, we
approximate it by linearization and give conditions (so-called constraint qualifications)
under which the linearizing cone and the contingent cone coincide. We recall that the set
K is convex as in the basic assumptions in Assumption 1.1.

Definition 3.11 (Linearizing cone). Let G be F-differentiable at x ∈ F = G−1[K].
The linearizing cone at x is given by

Tℓ(G,K, x) =
{
d ∈ X : G′(x)d ∈ T (K,G(x))

}
=
{
d ∈ X : G′(x)d ∈ cone(K,G(x))

}
.

Remark 3.12. Note that due to convexity of K, the linearizing cone Tℓ(G,K, x) is
always convex. (See Lemma 3.8.) It is moreover closed.

Remark 3.13. For the classical NLP

min f(x) s.t. g(x) ≤ 0, h(x) = 0

with f : Rn → R, g : Rn → Rm and h : Rn → Rp continuously differentiable, given in
our setting for (P) byX = Rn, Z = Rm×Rp, G(x) =

(
g(x)
h(x)

)
andK = (−∞, 0]m×{0}p,

we indeed have (see the exercises)

Tℓ(G,K, x) =
{
d ∈ Rn : ∇h(x)Td = 0, ∇gi(x)Td ≤ 0 for i ∈ A(x)

}
,

where A(x) = {i : gi(x) = 0} is the set of active inequality constraints. This is the
standard linearizing cone from Nonlinear Optimization.

November 16, 2022

←− 5
We would like to infer from (3.1) that the optimality condition holds not only for directions
d from the cone T (F , x̄), using M = F , but also for directions from the cone Tℓ(G,K, x̄).
This, however, is in general only true if Tℓ(G,K, x̄) ⊆ T (F , x̄).
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Definition 3.14 (Abadie Constraint Qualification). The Abadie Constraint Qualification
(ACQ) holds true at a point x̄ ∈ F if the condition

Tℓ(G,K, x̄) ⊆ T (F , x̄)

is satisfied. We call any condition which implies (ACQ) a constraint qualification
(CQ).

Note that there are sets F where (ACQ) is never satisfied. For example, this is always
the case when T (F , x) is not convex, since we have noted in Remark 3.12 that Tℓ(G,K, x)
is always convex, and the reverse inclusion is always true:

Lemma 3.15. Let G be F-differentiable at x ∈ F = G−1[K]. Then T (F , x) ⊆
Tℓ(G,K, x).

Proof. For d ∈ T (F , x) there exist sequences (xk) ⊆ F and (ηk) > 0 such that xk → x
and ηk(xk − x) → d. Without loss of generality, we can assume ηk → ∞ (why?). We
need to show that G′(x)d ∈ T (K,G(x)). As in the proof of Theorem 3.9, we find
ηko
(
∥xk − x̄∥X

)
→ 0 and thus

ηk
[
G(xk)−G(x)

]
= G′(x)

[
ηk(xk − x)

]
+ ηko

(
∥xk − x∥X

)
→ G′(x)d.

Due to ηk → ∞, or, alternatively, continuity of G, we have G(xk) → G(x) and, of course,
G(xk) ∈ K for every k. We conclude G′(x)d ∈ T (K,G(x)).

3.1 Robinson’s constraint qualification

The first CQ we consider is an algebraic-topological condition due to Robinson [Ro76] and
will be of great relevance. It will be used to prove the Karush-Kuhn-Tucker conditions
for (P), which are the most common form of first order optimality conditions.

Definition 3.16 (Robinson’s constraint qualification, regularity). We say that
Robinson’s constraint qualification (RCQ) is satisfied for the problem (P) at x̄ ∈ F if
there holds

0 ∈ int
(
G(x̄) +G′(x̄)X −K

)
. (3.2)

In this case, we also say that x̄ ∈ F is regular.

In this section we will show that (3.2) implies the ACQ. (So it is a CQ.) First, we
establish the connection to a well known CQ in the finite-dimensional case.

20



Robinson’s constraint qualification

Example 3.17. Consider the case of an NLP

min f(x) s.t. g(x) ≤ 0, h(x) = 0

as in Remark 3.13. We will show that in this case (3.2) is equivalent to the
Mangasarian Fromovitz constraint qualification (MFCQ):

rank∇h(x̄) = p, ∃ d ∈ Rn : ∇h(x̄)Td = 0, ∇gi(x̄)Td < 0 for i ∈ A(x̄). (3.3)

Let RCQ (3.2) be true for x̄ satisfying g(x̄) ≤ 0 and h(x̄) = 0, i.e.,

0 ∈ int

{(
g(x̄) +∇g(x̄)T s− v

∇h(x̄)T s

)
: s ∈ Rn, v ∈ (−∞, 0]m

}
.

The lower block requires that ∇h(x̄)T is surjective, which implies rank∇h(x̄) = p.
Now, let δ > 0 and set w ∈ Rm by wi = −δ if gi(x̄) = 0 and wi = 0 if gi(x̄) < 0.
Then (

w
0

)
∈
{(

g(x̄) +∇g(x̄)T s− v
∇h(x̄)T s

)
: s ∈ Rn, v ∈ (−∞, 0]m

}
if we choose δ sufficiently small. This means that there exist s ∈ Rn and v ∈ (−∞, 0]m

with (
w
0

)
=

(
g(x̄) +∇g(x̄)T s− v

∇h(x̄)T s

)
.

Hence, ∇h(x̄)T s = 0 and, for all i with gi(x̄) = 0:

∇gi(x̄)T s = wi + vi = −δ + vi ≤ −δ < 0.

Thus, the MFCQ (3.3) is satisfied for d := s.

Conversely, let the MFCQ (3.3) hold true and let d ∈ Rn be the corresponding vector.
We show that there exists ε > 0 such that

Bε,Rm+p ⊆
{(

g(x̄) +∇g(x̄)T s− v
∇h(x̄)T s

)
: s ∈ Rn, v ∈ (−∞, 0]m

}
.

Firstly, from gi(x̄) < 0 for i /∈ A(x̄), we can find numbers δ1, t > 0 such that

gi(x̄) +∇gi(x̄)T td < −2δ1 for i /∈ A(x̄).

Secondly, for i ∈ A(x̄) we know that ∇gi(x̄)Td < 0, thus we can find another number
δ2 > 0 such that ∇gi(x̄)T td < −2δ2 for all i ∈ A(x̄). But then we have

gi(x̄) +∇gi(x̄)T td < −2δ for i = 1, . . . ,m,
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where δ := min(δ1, δ2), and there exists ρ > 0 such that

gi(x̄) +∇gi(x̄)T
(
td+ s0

)
< −δ for i = 1, . . . ,m,

for all s0 ∈ Bρ,Rn(0). From the rank assumption on ∇h(x̄) in (3.3), we finally obtain
a number ε1 such that Bε1,Rp(0) ⊆ ∇h(x̄)TBρ,Rn(0) (why?) and set ε := min(δ, ε1).

Now consider an arbitrary vector w =
(
w1

w2

)
∈ Rm+p with w ∈ Bε,Rm+p(0). Then we

also have ∥wi∥2 < ε for i = 1, 2, and by construction of ρ and ε there exists a vector
s0 ∈ Bρ,Rn(0) ⊂ Rn with w2 = ∇h(x̄)T s0 = ∇h(x̄)T (td+ s0). Choosing s := td+ s0
and

v := −w1 + g(x̄) +∇g(x̄)T s,

we find vi < ε− δ ≤ 0 and thus v ∈ (−∞, 0]m. But this means that

w =

(
g(x̄) +∇g(x̄)T s− v

∇h(x̄)T s

)
and, since w ∈ Bε,Rm+p(0) was arbitrary,

Bε,Rm+p(0) ⊂
{(

g(x̄) +∇g(x̄)T s− v
∇h(x̄)T s

)
: s ∈ Rn, v ∈ (−∞, 0]m

}
,

which is exactly Robinson’s CQ (3.2) for x̄.

A particularly interesting case for RCQ is the one where intK ̸= ∅, which allows to
obtain a slightly more direct formulation.

Lemma 3.18. If intK ≠ ∅, then Robinson’s CQ for x̄ ∈ F = G−1[K] is equivalent
to the existence of h ∈ X with

G(x̄) +G′(x̄)h ∈ intK, (3.4)

which is also called the Linarized Slater constraint qualification (LSCQ).

Proof. From (3.4) it follows that for δ > 0 sufficiently small there holds G(x̄) +G′(x̄)h+
BZ,δ(0) ⊂ K. Hence,

BZ,δ(0) ⊂ G(x̄) +G′(x̄)h−K ⊂ G(x̄) +G′(x̄)X −K

and RCQ is satisfied. We next show that if the LSCQ is not satisfied, then the RCQ also
fails to hold. So, let (3.4) be violated. This means that the convex sets G(x̄) +G′(x̄)X
and intK have an empty intersection. (Why is intK convex?) By the Hahn-Banach
theorem as in Proposition 3.5, the sets can thus be separated by a hyperplane [z′ = α],
i.e., there exist z′ ∈ Z∗ \ {0} and α ∈ R with〈

z′, G(x̄) +G′(x̄)h
〉
≥ α ≥ ⟨z′, z⟩ for all h ∈ X, z ∈ K.
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Now choose a vector v ∈ Z with ⟨z′, v⟩Z∗,Z < 0. Then for all t > 0 there holds〈
z′, G(x̄) +G′(x̄)h− z

〉
≥ 0 > ⟨z′, tv⟩ for all h ∈ X, z ∈ K,

which shows that tv /∈ G(x̄) +G′(x̄)X −K for all t > 0. But this means that Robinson’s
CQ (3.2) cannot hold.
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There are also more sufficient conditions and equivalencies to RCQ, in particular for
the often-occurring case of multiple “blocks” of constraints with different structure. We
collect some useful cases in the following proposition. For the proofs we refer to the
exercises.

Proposition 3.19. Let x̄ ∈ F = G−1[K] be given.

(a) If G′(x̄) ∈ L(X;Z) is surjective, then RCQ is satisfied for x̄.

(b) Ljusternik’s theorem: Let K = {0Z}. Then RCQ for x̄ is satisfied if and only
if G′(x̄) : X → Z is surjective.

Now let G be of the form

G =

(
G1

G2

)
: X → Z1 × Z2 = Z

and let accordingly K = K1 ×K2 where Ki ⊆ Zi for i = 1, 2.

(c) If G′1(x̄) ∈ L(X;Z1) is surjective, then RCQ for x̄ is equivalent to

0 ∈ int
(
G2(x̄) +G′2(x̄)

(
G′1(x̄)

−1[K1 −G1(x̄)
])

−K2

)
.

(d) If G′1(x̄) ∈ L(X;Z1) is surjective and intK2 ̸= ∅ in Z2, then RCQ for x̄ is
equivalent to the existence of h ∈ X such that

G1(x̄) +G′1(x̄)h ∈ K1,

G2(x̄) +G′2(x̄)h ∈ intK2.
(3.5)

In particular, if K1 = {0Z1}, then the first of the two conditions in (3.5)
collapses to h ∈ kerG′1(x̄).

We want to show that Robinson’s CQ (3.2) implies the ACQ. To do so, we will need an
estimate that allows us to bound the distance of a point x from G−1[K] by means of the
distance of G(x) from K.

Reminder: The distance of a point b to a set A in a normed vector space is given by

dist(b, A) := inf
a∈A

∥a− b∥.
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A special case of a celebrated result by Robinson provides such an estimate, cf. [BS00,
Thm. 2.87], see also [Ro76, Cor. 1] and [Ro76b]:

Theorem 3.20. Assume that Robinson’s CQ is satisfied at x̄ ∈ F = G−1[K] and let
G : X → Z be continuously F-differentiable near x̄. Then there exist constants c > 0
and δ > 0 such that

dist
(
x,G−1[K − z]

)
≤ c dist

(
G(x) + z,K

)
(3.6)

for all x ∈ Bδ,X(x̄) and z ∈ Bδ,Z(0), where

G−1[K − z] =
{
x ∈ X : G(x) + z ∈ K

}
.

Remark 3.21.

(a) The condition (3.6) is called metric regularity of G at x̄ with respect to K. This
is also the origin of calling x̄ regular if it satisfies RCQ.

(b) For the special choice z = 0, we obtain

dist(x,F) ≤ c dist(G(x), K)

for all x ∈ Bδ,X(x̄).

(c) In the case K = {0}, the metric regularity condition (3.6) is equivalent to

dist
(
x,
{
y ∈ X : G(y) = z

})
≤ c ∥G(x)− z∥Z

for all x ∈ Bδ,X(x̄) and z ∈ Bδ,Z(0).

Using Theorem 3.20, we finally prove that Robinson’s constraint qualification implies the
ACQ.

Theorem 3.22. Let G be continuously F-differentiable near x̄ ∈ F and assume that
Robinson’s constraint qualification (3.2) holds at x̄. Then the ACQ is satisfied at x̄,
i.e., T (F , x̄) = Tℓ(G,K, x̄).

Proof. We only need to show Tℓ(G,K, x̄) ⊆ T (F ; x̄), so consider an arbitrary direction
h ∈ Tℓ(G,K, x̄). Then, by definition, G′(x̄)h = v ∈ T (K,G(x̄)) and there exist sequences
(zk) ⊆ K, (ηk) > 0 such that zk → G(x̄) and vk := ηk(zk − G(x̄)) → v as k → ∞. We
can always choose (zk) and (ηk) such that ηk → ∞ (why?) and we suppose that this is
the case from now on.
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By Taylor expansion, or the definition of F-differentiability, we obtain

G
(
x̄+ η−1k h

)
= G(x̄) +G′(x̄)η−1k h+ rk(h) = G(x̄) + η−1k v + rk(h)

= zk + η−1k (v − vk) + rk(h),

where rk(h) ∈ Z with ∥rk(h)∥Z = o
(
η−1k ∥h∥X

)
as k → ∞. Hence, using Theorem 3.20

with z = 0 (cf. Remark 3.21) and η−1k → 0, there exists c > 0 and ℓ > 0 such that for all
k ≥ ℓ we have

dist
(
x̄+ η−1k h,F

)
≤ c dist

(
G(x̄+ η−1k h), K

)
≤ c

∥∥G(x̄+ η−1k h)− zk
∥∥
Z
= c

∥∥η−1k (v − vk) + rk(h)
∥∥
Z
.

Now, for each k ≥ ℓ, there exists an infimal sequence (xkm)m ⊆ F for dist(x̄+ η−1k h,F).
Thus there is m0(k) such that∥∥x̄+ η−1k h− xkm

∥∥
X
≤ dist(x̄+ η−1k h,F) +

1

kηk
for m ≥ m0(k).

Accordingly, the sequence (xk) := (xkm0(k)
)k ⊆ F satisfies∥∥x̄+ η−1k h− xk

∥∥
X
≤ c

∥∥η−1k (v − vk) + rk(h)
∥∥
Z
+

1

kηk
for k ≥ ℓ.

But this implies∥∥ηk(xk − x̄)− h
∥∥
X
≤ c ∥v − vk∥Z + c ηko

(
η−1k ∥h∥X

)
+

1

k
−→ 0 as k → ∞,

so ηk(xk − x̄) → h and also xk → x̄ (recall that ηk → ∞). This proves h ∈ T (F , x̄).
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←− 7

3.2 The Karush-Kuhn-Tucker conditions

We will take advantage of the easier structure of Tℓ(G,K, x̄) to derive optimality conditions
of Karush-Kuhn-Tucker type under a constraint qualification. This will be achieved by
applying a separation theorem, cf. Proposition 3.5. To prove the required interior point
condition, Robinson’s CQ (3.2) is used once again in a form that will be derived now.

We give the first result in an abstract formulation to make the idea more transparent.
It builds upon the following extension of the open mapping theorem for multi-valued
functions, again due to Robinson ([Ro72], [Ro76b, Thm. 1]).

Reminder: The fundamental open mapping theorem says that if A ∈ L(X;Y ) is a
continuous linear surjective operator between Banach spaces X and Y , then it is an
open mapping, i.e., 0 ∈ int(ABr,X(0)) for all r > 0. The Banach space property for X
and Y is crucial here.
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Note that the graph of a continuous linear operator A ∈ L(X;Y ), so the set {(x, y) ∈
X × Y : Ax = y}, is closed and convex, and if A is surjective, then 0 ∈ int(ABr,X(0))
for some (and thus all) r > 0. Moreover, A is surjective if and only if 0 ∈ int(AX). In
this sense, the following result is a true generalization of the classical open mapping
theorem.

Proposition 3.23 (Generalized open mapping theorem). Let Ψ: X ⇒ Z be a set-
valued function (i.e., Ψ(x) ⊆ Z for all x ∈ X) between Banach spaces X and Z
whose graph

graphΨ =
{
(x, z) ∈ X × Z : z ∈ Ψ(x)

}
.

is a closed convex set, and let z ∈ intΨ(X). Then z ∈ intΨ(Br,X(x)) for all r > 0
and all x ∈ Ψ−1[{z}].

Lemma 3.24. Let A ∈ L(X;Z) with Banach spaces X and Z and let C ⊆ Z be a
closed convex set with 0 ∈ C. Then the following assertions are equivalent:

(i) AX + cone(C) = Z, and

(ii) 0 ∈ int
(
ABX(0) +

(
C ∩BZ(0)

))
.

Proof. We start with (ii) =⇒ (i). Let z ∈ Z. Choosing ε > 0 sufficiently small, (ii) means
that

εz ∈ ABX(0) +
(
C ∩BZ(0)

)
=⇒ z ∈ ABε−1,X(0) + ε−1

(
C ∩BZ(0)

)
and thus z ∈ AX + cone(C). Since z was arbitrary, this implies (i).

Now we turn to (i) =⇒ (ii). We employ the generalized open mapping theorem, setting

Ψ: X × R ⇒ Z, Ψ(x, t) :=

{
Ax+ t

(
C ∩BZ(0)

)
if t ≥ 0,

∅ otherwise.

Then by (i), Ψ(X,R) = AX + cone(C) = Z and thus clearly Ψ(0, 0) = 0 ∈ intΨ(X,R).
Moreover, the graph of Ψ is closed and convex and, due to Proposition 3.23, we obtain

0 ∈ intΨ
(
BX(0), B(0)

)
= int

(
ABX(0) + [0, 1)

(
C ∩BZ(0)

))
⊂ int

(
ABX(0) +

(
C ∩BZ(0)

))
,

where we have used that 0 ∈ C.
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With Lemma 3.24, we are now able to give an alternative form of the RCQ: the Zowe-
Kurcyusz constraint qualification (ZKCQ) [ZK79] in a feasible point x̄ ∈ F = G−1[K]
given by

Z = G′(x̄)X − cone(K,G(x̄)). (3.7)

It is indeed equivalent to (RCQ), and even to the restricted version

0 ∈ int
(
G′(x̄)BX(0)−

(
(K −G(x̄)) ∩BZ(0)

))
, (3.8)

as the following lemma shows:

Lemma 3.25. Robinson’s constraint qualification (3.2) in x̄ ∈ F is equivalent to
both forms of the Zowe-Kurcyusz constraint qualification, that is

(3.2) ⇐⇒ (3.7) ⇐⇒ (3.8).

Proof. The equivalence of (3.7) and (3.8) is exactly the statement of Lemma 3.24 for the
choices A = G′(x̄) and C = G(x̄) −K, the latter being a closed convex set satisfying
0 ∈ C thanks to G(x̄) ∈ K.

Robinson’s CQ (3.2) follows from (3.8) immediately due to the existence of ε > 0 such
that

Bε,Z(0) ⊂ G′(x̄)BX(0)−
(
(K −G(x̄)) ∩BZ(0)

)
⊂ G(x̄) +G′(x̄)X −K.

Lastly, from Robinson’s CQ (3.2) we infer the (ZKCQ) (3.7) by considering z ∈ Z and
observing that for ε > 0 sufficiently small we find εz ∈ G(x̄) +G′(x̄)X −K and thus

z ∈ G′(x̄)ε−1X − ε−1
(
K −G(x̄)

)
⊂ G′(x̄)X − cone(K,G(x̄)).

Since z ∈ Z was arbitrary, this implies (3.7).

For stating the main result of this section, we need the notion of the polar cone.

Definition 3.26 (Polar cone). Let ∅ ≠ C ⊆ Z. Then the set

C◦ :=
{
z′ ∈ Z∗ : ⟨z′, z⟩Z∗,Z ≤ 0 for all z ∈ C

}
⊆ Z∗

denotes the polar cone of C, which is a closed convex cone.

Theorem 3.27 (First-order necessary optimality conditions). Let X and Z be
Banach spaces and K ⊆ Z be closed and convex. Further, let x̄ be a local solution
of (P) at which f : X → R and G : X → Z are continuously F-differentiable. Assume
that Robinson’s constraint qualification (3.2) is satisfied at x̄.

Then there exists a Lagrange multiplier λ̄ ∈ Z∗ such that the Karush-Kuhn-Tucker
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conditions for (P)

f ′(x̄) +G′(x̄)∗λ̄ = 0, (3.9)

G(x̄) ∈ K, λ̄ ∈ T (K,G(x̄))◦, (3.10)

are satisfied.

December 7, 2022

8 −→

Proof. To show the existence of a Lagrange multiplier, we define the set M ⊆ R× Z as
follows:

M =
{(〈

f ′(x̄), h
〉
X∗,X

+ σ,G′(x̄)h− v
)
: h ∈ X, σ ≥ 0, v +G(x̄) ∈ K

}
The idea is to separate intM from the origin (0, 0) in R× Z and to derive a Lagrange
multiplier from the separating hyperplane. Due to the linear appearances of h, σ and v
and the convexity of K, the set M is quite obviously convex. Accordingly, intM is also
convex (why?) and clearly open. In order to apply the Hahn Banach separation theorem
as stated in Proposition 3.5, we need to show that (0, 0) /∈ intM and that intM is in
fact nonempty.

We first claim that (0, 0) is a boundary point of M , so (0, 0) /∈ intM . It is evident that
(0, 0) ∈M , but every open neighborhood of (0, 0) in R× Z must contain elements which
are not in M , namely at least those of the form (−τ, 0) for τ > 0. In fact, assume that
(−τ, 0) ∈ M for some τ > 0. We show that this contradicts the local optimality of x̄
expressed by Theorem 3.9, which was〈

f ′(x̄), d
〉
X∗,X

≥ 0 for all d ∈ T (F , x̄) = Tℓ(G,K, x̄),

where we have already used that Robinson’s CQ implies the ACQ (Theorem 3.22).
Indeed, if (−τ, 0) ∈ M for some τ > 0, then there exist h ∈ X and σ ≥ 0 with
⟨f ′(x̄), h⟩X∗,X + σ = −τ < 0 and G′(x̄)h = v ∈ K −G(x̄). But then h ∈ Tℓ(G,K, x̄) and
⟨f ′(x̄), h⟩X∗,X < 0. This is the contradiction.

Next, we show thatM has a nonempty interior. To this end, we use that (3.2) implies (3.8)
as in Lemma 3.25. By (3.8), there exists δ > 0 such that for any z ∈ Bδ,Z(0) there exist

h ∈ BX(0) and v ∈ K−G(x̄) with G′(x̄)h−v = z. Moreover, ⟨f ′(x̄), h⟩X∗,X ≤ ∥f ′(x̄)∥X∗

due to h ∈ BX(0). This shows that
[
∥f ′(x̄)∥X∗ ,∞

)
× Bδ,Z(0) ⊆ M , hence M has

nonempty interior.

Now Proposition 3.5 shows that (0, 0) and intM can be separated by a hyperplane
[(α, z′) = β], i.e., there exist α ∈ R and z′ ∈ Z∗ with (α, z′) ̸= (0, 0) such that〈(

α

z′

)
,

(
t

z

)〉
= αt+

〈
z′, z

〉
Z∗,Z

≥ β ≥
〈(

α

z′

)
,

(
0

0

)〉
= 0 for all (t, z) ∈M.
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Inserting the definition of M , the foregoing inequality means that

α
(〈
f ′(x̄), h

〉
X∗,X

+ σ
)
+
〈
z′, G′(x̄)h− v

〉
Z∗,Z

≥ 0

for all h ∈ X, σ ≥ 0, v ∈ K −G(x̄). (3.11)

We will derive the KKT conditions (3.9) and (3.10) from this inequality. For h = 0,
v = 0 and σ > 0 we obtain α ≥ 0. Now assume that α = 0. Then〈

z′, G′(x̄)λh− λv
〉
Z∗,Z

≥ 0 for all h ∈ X, v ∈ K −G(x̄), λ ≥ 0,

from which we find that for α = 0, (3.11) implies that〈
z′, z

〉
Z∗,Z

≥ 0 for all z ∈ G′(x̄)X − cone(K,G(x̄)).

From the (ZKCQ) (3.7) we obtain the contradiction z′ = 0, so we have α > 0. This
allows to multiply (3.11) by α−1 and to obtain, setting λ̄ = α−1z′:(〈

f ′(x̄), h
〉
X∗,X

+ σ
)
+
〈
λ̄, G′(x̄)h− v

〉
Z∗,Z

≥ 0 for all h ∈ X, σ ≥ 0, v ∈ K −G(x̄).

The choice h = 0 and σ = 0 shows that λ̄ ∈ cone(K,G(x̄))◦ = T (K,G(x̄))◦.

Further, choosing σ = 0 and v = 0 shows that〈
f ′(x̄), h

〉
X∗,X

+
〈
λ̄, G′(x̄)h

〉
Z∗,Z

≥ 0 for all h ∈ X,

which is the same as 〈
f ′(x̄) +G′(x̄)∗λ̄, h

〉
X∗,X

≥ 0 for all h ∈ X.

This implies
f ′(x̄) +G′(x̄)∗λ̄ = 0.

Thus, the existence of a Lagrange multiplier is proved.

So far, we have derived the KKT conditions under Robinson’s CQ and used the
equivalences to other conditions as proven in Lemma 3.25. One might wonder how
restrictive Robinson’s CQ or the equivalent (ZKCQ) (3.7) actually is. The following
lemma proves necessary properties for the set of Lagrange multipliers associated to (P)
and shows that these properties are also nearly sufficient for the (ZKCQ).

Lemma 3.28. Let x̄ ∈ F be given and assume that the set of Lagrange multipliers
associated to (P) given by

Λ(x̄) =
{
λ ∈ T (K,G(x̄))◦ : f ′(x̄) +G′(x̄)∗λ = 0

}
is nonempty. It is a closed and convex set characterized by the following assertions:

(1) If the (ZKCQ)
Z = G′(x̄)X − cone(K,G(x̄)) (3.7)
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or equivalently (3.8) or Robinson’s CQ (3.2) are satisfied in x̄, then Λ(x̄) is
bounded.

(2) Let conversely Λ(x̄) be bounded. Then

Z = G′(x̄)X − cone(K,G(x̄)),

i.e., G′(x̄)X − cone(K,G(x̄)) is dense in Z.

December 14, 2022
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Proof. Closedness and convexity of Λ(x̄) are evident since the polar cone is closed and
convex (as an infinite intersection of closed half spaces) and the defining equation, so
f ′(x̄) +G′(x̄)∗λ = 0, is linear and continuous w.r.t. λ ∈ Z∗.

We start with (1), so let one of the equivalent constraint qualifications (3.2), (3.7), or (3.8)
as well as the KKT conditions (3.9) and (3.10) be satisfied, i.e.,

f ′(x̄) +G′(x̄)∗λ̄ = 0, (3.9)

G(x̄) ∈ K, λ̄ ∈ T (K,G(x̄))◦. (3.10)

Due to λ̄ ∈ T (K,G(x̄))◦ = cone(K,G(x̄))◦, we know that〈
λ̄, v −G(x̄)

〉
Z∗,Z

≤ 0 for all v ∈ K.

Moreover, from (3.8) there exists δ > 0 such that for all z ∈ Bδ,Z(0) there are h ∈ BX(0)
and v ∈ K such that −z = G(x̄) +G′(x̄)h− v. Applying λ̄ to z yields〈

λ̄, z
〉
Z∗,Z

=
〈
λ̄, v −G(x̄)−G′(x̄)h

〉
Z∗,Z

=
〈
λ̄, v −G(x̄)

〉
Z∗,Z

−
〈
f ′(x̄) +G′(x̄)∗λ̄, h

〉
X∗,X

+
〈
f ′(x̄), h

〉
X∗,X

≤
∥∥f ′(x̄)∥∥

X∗∥h∥X ≤
∥∥f ′(x̄)∥∥

X∗ .

But this shows that 〈
λ̄, z̄
〉
Z∗,Z

≤ δ−1
∥∥f ′(x̄)∥∥

X∗ for all z̄ ∈ BZ(0)

since z ∈ Bδ,Z(0) was arbitrary, and thus∥∥λ̄∥∥
Z∗ ≤ δ−1

∥∥f ′(x̄)∥∥
X∗ .

Since this estimate is uniform in λ̄, the set Λ(x̄) is bounded.

Now assume that Λ(x̄) is nonempty and bounded. We argue via contradiction, so assume
that there exists

z̄ ∈ Z \M with M := G′(x̄)X − cone(K,G(x̄)).
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The set M is clearly closed and convex and contains 0, so it is nonempty. We use
Proposition 3.5 to separate z̄ and M : There exists an hyperplane [z′ = α] such that〈

z′, z
〉
Z∗,Z

≥ α ≥
〈
z′, z̄

〉
Z∗,Z

for all z ∈M.

(In fact, Proposition 3.5 states that there is a hyperplane H which even strictly separates
z̄ and M . We will however not need the strict separation.) Since G′(x̄)X− cone(K,G(x̄))
is a cone, so is its closure M , hence the foregoing inequality implies ⟨z′, z⟩Z∗,Z ≥ 0 for
all z ∈ M : The right-hand side is a fixed nonpositive number—recall 0 ∈ M—and we
are allowed to scale the left-hand side by an arbitrary number λ > 0 by inserting λz for
z ∈ M . The inequality can then only be true if ⟨z′, z⟩Z∗,Z ≥ 0 for all z ∈ M , which in
turn implies 〈

z′, G′(x̄)h+G(x̄)− v
〉
Z∗,Z

≥ 0 for all h ∈ X, v ∈ K. (3.12)

We will derive that λ̄ + βz′ ∈ Λ(x̄) for every λ̄ ∈ Λ(x̄) and β ≥ 0 from this inequality.
Choosing v = G(x̄) ∈ K in (3.12) shows that〈

z′, G′(x̄)h
〉
Z∗,Z

=
〈
G′(x̄)∗z′, h

〉
X∗,X ≥ 0 for all h ∈ X

and thus (insert h ∈ X and −h ∈ X)

G′(x̄)∗z′ = 0 in X∗. (3.13)

Conversely, inserting h = 0 in (3.12) implies〈
z′, v −G(x̄)

〉
Z∗,Z

≤ 0 for all v ∈ K,

so
z′ ∈ cone(K,G(x̄))◦ = T (K,G(x̄))◦. (3.14)

Now finally consider λ̄ ∈ Λ(x̄) satisfying

f ′(x̄) +G′(x̄)∗λ̄ = 0, (3.9)

G(x̄) ∈ K, λ̄ ∈ T (K,G(x̄))◦. (3.10)

From (3.13) and (3.14) we observe that

f ′(x̄) +G′(x̄)∗
(
λ̄+ βz′

)
= 0,

G(x̄) ∈ K, λ̄+ βz′ ∈ T (K,G(x̄))◦,

so λ̄ + βz′ ∈ Λ(x̄) for every β ≥ 0. Letting β → ∞ gives a contradiction to the
boundedness of Λ(x̄).
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Remark 3.29. A couple (0, 0) ̸= (α, λ̄) ∈ R+ × Z∗ satisfying the generalized KKT
conditions

αf ′(x̄) +G′(x̄)∗λ̄ = 0, (3.15)

G(x̄) ∈ K, λ̄ ∈ T (K,G(x̄))◦. (3.16)

is called generalized Lagrange multiplier. The functional z′ constructed in the second
point of the foregoing proof is a particular instance of a so-called singular Lagrange
multiplier (α, λ̄) = (0, z′) ∈ R× Z∗ satisfying the generalized KKT conditions (3.15)
and (3.16) for α = 0 and λ̄ ̸= 0. If such a singular Lagrange multiplier exists, the set
Λ(x̄) can never be bounded, as seen in the foregoing proof.

Even more, the existence of a singular Lagrange multiplier implies that

Z ̸= G′(x̄)X − cone(K,G(x̄)).

This is seen as follows: Let (0, λ̄) ̸= (0, 0) be a singular Lagrange multiplier. Then
we have by (3.15) and (3.16)〈

λ̄, G′(x̄)h− v
〉
Z∗,Z

≥ 0 for all h ∈ X, v ∈ cone(K,G(x̄)),

and thus −λ̄ ∈ (G′(x̄)X − cone(K,G(x̄)))◦ from which there would follow λ̄ = 0 if
G′(x̄)X − cone(K,G(x̄)) was dense in Z (why?).

Lemma 3.30. If x̄ is a KKT-point, so Λ(x̄) ̸= ∅, then〈
f ′(x̄), d

〉
X∗,X

≥ 0 for all d ∈ Tℓ(G,K, x̄).

Proof. For d ∈ Tℓ(G,K, x̄) there holds G′(x̄)d ∈ T (K,G(x̄)). Now with λ̄ ∈ Λ(x̄), we
have 〈

f ′(x̄), d
〉
X∗,X

= −
〈
λ̄, G′(x̄)d

〉
Z∗,Z

≥ 0,

since λ̄ ∈ T (K,G(x̄))◦.

The KKT conditions can be written very concisely by means of the Lagrange function
which we have already encountered in Nonlinear Optimization:

Definition 3.31 (Lagrangian). The Lagrange function or Lagrangian L : X×Z∗ → R
for (P) is given by

L(x, λ) = f(x) +
〈
λ,G(x)

〉
Z∗,Z

.
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Using the Lagrangian, the first KKT expression can be expressed quite comfortably by

L′x(x̄, λ̄) = f ′(x̄) +G′(x̄)∗λ̄ = 0.

We next turn to particular cases of (P) and their associated KKT conditions.

3.2.1 The case of cone constraints

We derive an easier representation of T (K, z̄)◦ for z̄ ∈ K when K is a closed convex
cone.

Reminder: Recall that a cone K is convex if and only if from x, y ∈ K it follows
that x + y ∈ K. Indeed, if K is convex, then 1

2
(x + y) ∈ K, and since K is a cone,

2 · 1
2
(x+ y) = x+ y ∈ K. Conversely, if x, y ∈ K, then also (1− t)x ∈ K and ty ∈ K

if t ∈ [0, 1], and then by assumption also (1− t)x+ ty ∈ K and K is convex.

This is done using the annihilator.

Reminder: The annihilator A⊥ of a set A ⊆ X is given by

A⊥ :=
{
x′ ∈ X∗ :

〈
x′, x

〉
= 0 for all x ∈ A

}
,

so the collection of all functionals x′ ∈ X∗ for which A ⊆ kerx′.

Lemma 3.32. If K is a closed convex cone and z̄ ∈ K, then

T (K, z̄)◦ = cone(K, z̄)◦ = K◦ ∩ {z̄}⊥.

Proof. The first equality follows from convexity of K (Lemma 3.8) and A◦ = A
◦
for every

set A; see the exercises.

For the second equality: For every z′ ∈ K◦ ∩ {z̄}⊥, there holds for all t > 0 and all
z ∈ K: 〈

z′, t(z − z̄)
〉
Z∗,Z

= t
〈
z′, z

〉
Z∗,Z

− t
〈
z′, z̄

〉
Z∗,Z

= t
〈
z′, z

〉
Z∗,Z

≤ 0.

Hence, cone(K, z̄)◦ ⊇ K◦ ∩ {z̄}⊥.
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Conversely, let z′ ∈ cone(K, z̄)◦. Due to K being closed, we have 0 ∈ K (why?) and
thus −z̄ = 1 · (0− z̄) ∈ cone(K, z̄). This implies ⟨z′,−z̄⟩Z∗,Z ≤ 0. On the other hand, as
above, 〈

z′, t(z − z̄)
〉
Z∗,Z

≤ 0 for all z ∈ K, t > 0. (3.17)

SinceK is a cone, z = 2z̄ ∈ K, so ⟨z′, z̄⟩Z∗,Z ≤ 0. But this means that both ⟨z′, z̄⟩Z∗,Z ≤ 0
and ⟨z′,−z̄⟩Z∗,Z ≤ 0, hence z′ ∈ {z̄}⊥. Then, in (3.17), ⟨z′, z⟩Z∗,Z ≤ 0 for all z ∈ K,
which is exactly the definition of z′ ∈ K◦.

Hence, in the case of a closed convex cone K, the KKT condition

G(x̄) ∈ K, λ̄ ∈ T (K,G(x̄))◦ (3.10)

can be written equivalently as a cone complementarity condition

G(x̄) ∈ K, λ̄ ∈ K◦,
〈
λ̄, G(x̄)

〉
Z∗,Z

= 0.

December 21, 2022

10 −→
As mentioned earlier, when K is a closed convex cone, then the condition G(x) ∈ K can
be viewed as an abstract inequality constraint. Indeed, we define a relation ≤K induced
by −K by

z1 ≤K z2 ⇐⇒ z2 − z1 ∈ −K.
If K is pointed (spitz), i.e., if z,−z ∈ K implies that z = 0, then this is indeed a partial
ordering in which we can cancel positive factors on both sides and have the relation
preserved under adding any element to both sides; in fact, it is enough to suppose that
0 ∈ K instead of K closed. (A non-pointed cone K is also sometimes called flat or blunt ;
there is an unfortunate amount of different notions for properties of cones in general.) A
partial ordering with the foregoing properties also defines a cone. See the exercises.

Example 3.33. In a function space X consisting of functions defined on some set
Ω ⊂ Rd, the cone of nonpositive functions

K− :=
{
f ∈ X : f(x) ≤ 0 for almost all x ∈ Ω

}
is pointed and induces the usual pointwise ordering of functions, so f ≤K− g if and
only if f(x) ≤ g(x) for almost all x ∈ Ω.

Remark 3.34. The seemingly unnecessarily complicated definition of the ordering
≤K is tailored to the classical notion of nonlinear programs: z ≤K 0 means exactly
that z ∈ K; so in case of cone constraints the standard constraint G(x) ∈ K can be
written as G(x) ≤K 0.

Note however that the notation can be misleading, as the partial ordering induced
by the cone of nonnegative functions K+ (cf. Example 3.33) is given by f ≤K+ g if
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and only if f(x) ≥ g(x) for almost all x ∈ Ω . . .

Using the cone ordering notation from above, we can rewrite the KKT conditions (3.10)
yet again to

G(x̄) ≤K 0, λ̄ ≥K+ 0,
〈
λ̄, G(x̄)

〉
Z∗,Z

= 0,

where K+ := −K◦ is the dual cone to K. The last representation quite exactly resembles
the classical KKT conditions from Nonlinear Optimization.

3.2.2 The Slater condition

We now consider the case of a convex problem, for which we first give a notion of convexity
in function spaces.

Definition 3.35 (Generalized convexity). Let K ⊆ Z be a closed convex cone. We
say that G : X → Z is convex with respect to −K (or ≤K), if

G
(
(1− t)x+ ty

)
≤K (1− t)G(x) + tG(y) for all x, y ∈ X, t ∈ [0, 1],

or equivalently

(1− t)G(x) + tG(y)−G
(
(1− t)x+ ty

)
∈ −K for all x, y ∈ X, t ∈ [0, 1].

In case of F-differentiable and convex G, the Slater constraint qualification (or Slater
condition), well-known from Nonlinear Optimization,

there exists a x ∈ F : G(x) ∈ intK (3.18)

implies the Robinson CQ:

Lemma 3.36. Let K ⊆ Z be a closed convex cone and let G be F-differentiable and
convex with respect to ≤K . Assume that the Slater condition (3.18) is satisfied. Then
RCQ (3.2) in the form of the Linearized Slater CQ (3.4) is satisfied in every feasible
point x̄ ∈ F = G−1[K].

Proof. Using convexity of G and the fact that K is a cone, we observe that for every
t ∈ (0, 1] and x̄ ∈ F we have

G
(
(1− t)x̄+ tx

)
− (1− t)G(x̄)− tG(x)

t
∈ K.

Taking the limit t↘ 0 gives (note that K is closed)

G(x̄) +G′(x̄)(x− x̄)−G(x) ∈ K ⇐⇒ G(x̄) +G′(x̄)(x− x̄) ∈ K +G(x).
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By the Slater condition, there exists ε > 0 with G(x) +Bε,Z(0) ⊆ K. Therefore,

G(x̄) +G′(x̄)(x− x̄) +Bε,Z(0) ⊆ K +G(x) +Bε,Z(0) ⊆ K +K = K.

Thus,
G(x̄) +G′(x̄)(x− x̄) ∈ intK,

which is exactly the LSCQ (3.4) and thus equivalent to the Robinson CQ by Lemma 3.18.

Remark 3.37. In the proof of Lemma 3.36, we have shown along the way that the
differentiable convex function G satisfies

G(y)−G(x)−G′(x)(y − x) ∈ −K or G′(x)(y − x) ≤K G(y)−G(x) (3.19)

for all x, y ∈ F = G−1[K]. This is exactly the analogue of the well-known
characterization of classical convex functions f : Rn → R, given by

∇f(x)T (y − x) ≤ f(y)− f(x).

The proof that (3.19) also implies convexity works again analogously to the classical
case.

3.2.3 Applications

We proceed by giving two examples for the KKT conditions in an optimal control setting.
The first one is still of rather abstract nature and incorporates control constraints, while
the second one is slightly more specialized and has state constraints.

Reminder: Let H be a Hilbert space. The Fréchet-Riesz representation theorem says
that there exists an isometric isomorphism T ∈ L(H∗;H)—the Riesz isomorphism—
such that

⟨g, v⟩H∗,H =
(
Tg, v

)
H

for all g ∈ H∗, v ∈ H,

where (·, ·)H is the inner product on the Hilbert spaceH. In particular, ∥g∥H∗ = ∥Tg∥H .
In this sense, we can always identify a Hilbert space H with its dual H∗ up to the
application of the Riesz isomorphism.

Example 3.38 (Optimal control problem with control constraints). We consider a
control-constrained optimal control problem

min
(y,u)∈Y×U

J(y, u) s.t. E(y, u) = 0, u ∈ Uad (3.20)
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governed by the state equation
E(y, u) = 0,

where E : Y × U → W is continuously differentiable, Y and W are Banach spaces,
and U = L2(Υ) for a measure space Υ. The objective function J : Y × U → R is
assumed to be F-differentiable and the control constraints are given by

Uad =
{
u ∈ U : a ≤ u ≤ b a.e. in Υ

}
with a, b ∈ L2(Υ) and a ≤ b almost everywhere on Υ, so Uad ≠ ∅. (Usually we will
have Υ = Ω ⊆ Rn for a bounded domain Ω ⊆ Rn with the Lebesgue measure or
Υ = ∂Ω with the boundary measure.)

Let (ȳ, ū) ∈ Y × U be a local solution to (3.20). We need a constraint qualification
to be satisfied in order to derive a KKT characterization for (ȳ, ū). To this end, we
first transfer the problem to standard form. This is obtained by identifying

X = Y × U, Z = W × U and K = {0W} × Uad ⊆ Z,

as well as x̄ = (ȳ, ū) and G : X → Z given by G(x) =
(
E(y,u)
u

)
.

We have seen in Proposition 3.19 thatG′(x̄) being surjective is a constraint qualification
by implying RCQ. Note that intUad = ∅ in U = L2(Υ) as seen in the exercises,
so there is no other (practical) characterization of RCQ than surjectivity of G′(x̄)
available. To show that G′(x̄) is indeed surjective, we need to show that for any
(w, u) ∈ Z = W × U there exists (hy, hu) ∈ X = Y × U such that

G′(x̄)h =

(
E ′y(ȳ, ū) E ′u(ȳ, ū)

0 idU

)(
hy
hu

)
=

(
w
u

)
,

where we have identified G′(x̄) with its Jacobian matrix type representation. (See
the exercises.) Due to the upper triangular form of this Jacobian of G′(x̄), it will
turn out that it is both sufficient and necessary to assume that E ′y(ȳ, ū) is surjective
in order to have G′(x̄) surjective. In fact, looking at the second row in the foregoing
equality, we immediately see that necessarily hu = u. Thus, surjectivity of G′(x̄) is
equivalent to, for every (w, u) ∈ W × U , being able to find hy ∈ Y such that

E ′y(ȳ, ū)hy = w − E ′u(ȳ, ū)u.

But this is exactly the question of surjectivity of E ′y(ȳ, ū). (Choose any u ∈ U and
consider w := E ′u(ȳ, ū)u) + v for arbitrary v ∈ W .)

So, if we assume that
E ′y(ȳ, ū) is surjective, (3.21)
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then G′(x̄) is surjective and RCQ for (3.20) is satisfied. Hence, there exist a Lagrange
multiplier (pair)

λ̄ = (p̄, µ̄) ∈ Z∗ = (W × U)∗ = W ∗ × U∗ = W ∗ × L2(Υ)

such that (3.9) and (3.10) are satisfied, i.e.,

J ′y(ȳ, ū) + E ′y(ȳ, ū)
∗p̄ = 0 in Y ∗,

J ′u(ȳ, ū) + E ′u(ȳ, ū)
∗p̄+ µ̄ = 0 in L2(Υ),

E(ȳ, ū) = 0 in W,

ū ∈ Uad, µ̄ ∈ T (Uad, ū)
◦.

January 11, 2023

11 −→

Note that {0W}◦ = W ∗, thus the condition p̄ ∈ {0W}◦ is void. Here we have used
that, with the Jacobian matrix type representations for G′(x̄) and f ′(x̄),

f ′(x̄) =

(
Jy(ȳ, ū)
Ju(ȳ, ū)

)
and G′(x̄)∗ =

(
Ey(ȳ, ū)

∗ 0
Eu(ȳ, ū)

∗ idU

)
.

Both Ey(ȳ, ū) and its adjoint correspond again to (partial) differential operators
if E did so; more precisely, they correspond to the linearization of the operator
represented by E and the adjoint of its linearization. See the coming Example 3.39.

We next consider T (Uad, ū)
◦. Since Uad is convex, we have T (Uad, ū) = cone(Uad, ū)

(Lemma 3.8). Using this, it is easy to see (and an exercise) that

T (Uad, ū) =
{
h ∈ L2(Υ): h|[ū=a] ≥ 0, h|[ū=b] ≤ 0

}
,

where [ū = a] = {x ∈ Υ: ū(x) = a(x)} and analogously for [ū = b]. Thus, T (Uad, ū)
◦

consists exactly of all functions s ∈ L2(Υ) such that∫
Υ

h(x)s(x) dx ≤ 0 for all h ∈ L2(Υ) with h|[ū=a] ≥ 0, h|[ū=b] ≤ 0.

We are going to derive pointwise properties for the functions s from this integral
variational inequality. In fact, we are going to show that

T (Uad, ū)
◦ =

{
s ∈ L2(Υ): s|[ū=a] ≤ 0, s|[ū=b] ≥ 0, s|[a<ū<b] = 0

}
.

It is easily verified that an element s of the set on the right will satisfy the above
variational inequality, so “⊇” is certainly true. We show the other inclusion. So let
s ∈ T (Uad, ū)

◦. Consider M ⊆ [ū = a]. Then χM ∈ T (Uad, ū), where

χM(x) =

{
1 if x ∈M,

0 otherwise.
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Suppose that s|M > 0 if M has nonzero measure. We obtain∫
Υ

χM(x)s(x) dx =

∫
M

s(x) dx > 0,

which is a contradiction to s ∈ T (Uad, ū)
◦. Thus s|[ū=a] ≤ 0 almost everywhere.

By the analogous argument with −χM ∈ T (Uad, ū) for M ⊆ [ū = b], we find that
then s|[ū=b] ≥ 0 almost everywhere. Finally, consider M ⊆ [a < ū < b]. Then
±χM ∈ T (Uad, ū), and it follows that s[a<ū<b] = 0.

Hence, the multiplier µ̄ for the control constraints is an L2(Υ) function satisfying

µ̄|[ū=a] ≤ 0, µ̄|[ū=b] ≥ 0, µ̄|[a<ū<b] = 0. (3.22)

A potential and common interpretation here is that µ̄ acts like an indicator for how
the restriction upon ū induced by the respective constraints a ≤ ū and ū ≤ b acts.
Of course, on the set [a < ū < b], the constraints do not restrict ū at all, which is
indicated by µ̄ = 0 on this set.

Example 3.39. We consider the general KKT-conditions derived in the foregoing
example for the semilinear elliptic optimal control problem as in Example 2.9. Then
Y = H1(Ω) and Υ = ∂Ω with the boundary measure; also U = L2(∂Ω) and
W = H1(Ω)∗ × L2(∂Ω). In Example 3.4, we have seen that for this problem, the
linearized operator E ′y(ȳ, ū) ∈ L(H1(Ω);H1(Ω)∗) and the equation E ′y(ȳ, ū)z = w
give rise to the weak formulation of the linear PDE

−∆z + 3ȳ2z = f on Ω,

∂z

∂ν
+ z = g on ∂Ω

for the functional w ∈ H1(Ω)∗ defined by

⟨w, v⟩ :=
∫
Ω

f(x)v(x) dx+

∫
∂Ω

g(x)v(x) dω(x).

Hence, the assumption that Ey(ȳ, ū) be surjective in truth corresponds to the question
whether we can solve (in a weak sense) the above PDE problem for all suitable
right-hand sides f and g. With the Lax-Milgram lemma, we can easily show that
this is the case for every (ȳ, ū). The associated bilinear form including the Robin
boundary condition is uniformly coercive since the zero-order term is induced by
3ȳ2, which is nonnegative, and there is a strictly positive factor 1 · z in the Robin
boundary condition term. (Use the generalized Friedrichs’ inequality (2.2).)

For this particular example, one moreover easily checks from the formula for the
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derivative E ′y(ȳ, ū) ∈ L(H1(Ω);H1(Ω)∗) in (ȳ, ū), which was given by

E ′y(ȳ, ū)z :
[
v 7→ (∇z,∇v)L2(Ω)n + (z, v)L2(∂Ω) + 3(ȳ2z, v)L2(Ω)

]
∈ H1(Ω)∗,

that the adjoint operator E ′y(ȳ, ū)
∗ ∈ L(H1(Ω);H1(Ω)∗) in fact induces the same

weak formulation. This is however not generic; here it happens because we consider
the particular case of the Laplacian, and because there is only an additional zero-order
term 3ȳ2z as opposed to possible first-order terms. (See also the next example.)

We further recall that J(y, u) = 1
2
∥y − yd∥2L2(Ω) +

α
2
∥u∥2L2(∂Ω). Thus, by Example 3.2

(bilinear form!), J is continuously F-differentiable L2(Ω)×L2(∂Ω) → R, and we have

J ′y(ȳ, ū)z = (ȳ − yd, z)L2(Ω), so J ′y(ȳ, ū)
∼= ȳ − yd

and
J ′u(ȳ, ū)h = α(ū, h)L2(∂Ω), so J ′u(ȳ, ū)

∼= αū

where we have used the Fréchet-Riesz isomorphism for each case to identify the
derivatives with the respective Hilbert space element. (In this sense, the∼= identification
yields the respective gradient.)

Recall from Example 3.4 that E ′u(ȳ, ū)h was given by −(h, ·)L2(∂Ω) ∈ L2(Ω)∗, and,
thus, so is E ′u(ȳ, ū)

∗p = −(p, ·)L2(∂Ω). It follows that the gradient equations

J ′y(ȳ, ū) + E ′y(ȳ, ū)
∗p̄ = 0 in H1(Ω)∗,

J ′u(ȳ, ū) + E ′u(ȳ, ū)
∗p̄+ µ̄ = 0 in L2(∂Ω)

in the KKT conditions in Example 3.38 correspond to the weak formulation of

−∆p̄+ 3ȳ2p̄ = yd − ȳ on Ω,

∂p̄

∂ν
+ p̄ = 0 on ∂Ω

and, with deliberate use of the Fréchet-Riesz isomorphism for L2(∂Ω),

αū− p̄+ µ̄ = 0 on ∂Ω.

Note that the latter gives an explicit formula for the desired object ū in terms of the
so-called adjoint state p̄ ∈ H1(Ω) which is again a weak solution of a PDE. In the
most simple case when µ̄—this was the Lagrange multiplier associated to Uad—is
zero, this shows that the optimal control ū is in fact as regular as the boundary trace
of an H1(Ω) function, so in H1/2(∂Ω).

But even with nonzero µ̄ associated to box constraints Uad as in (3.22) derived in
Example 3.4, we obtain a very useful formula for ū, which is that for ω-almost all
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x ∈ ∂Ω, we have

ū(x) = proj[a(x),b(x)]

( 1
α
p̄(x)

)
=


a(x) if 1

α
p̄(x) ≤ a(x),

1
α
p̄(x) if a(x) < 1

α
p̄(x) < b(x),

b(x) if 1
α
p̄(x) ≥ b(x).

This is a very interesting formula with far-reaching implications. (Check for instance
what happens for α ↘ 0.) Also, we see that a certain regularity transfer from p̄
to ū still happens also in the case when µ̄ ̸= 0; in particular, this is the case if the
functions a and b defining Uad are sufficiently regular, for example, also in H1/2(∂Ω),
so boundary traces of H1(Ω) functions. See the exercises.

January 18, 2023

←− 12Example 3.40 (Elliptic optimal control problem with state contraints). We consider
an optimal control problem with an abstract elliptic state equation, control on the
right-hand side and pointwise state constraints, that is, the constraints are of the
form

Ay = Bu+ b and y ≤ ψ.

The state equation is to be seen as an abstract form of an elliptic partial differential
equation in weak formulation by the following assumptions:

• Ω ⊂ Rn, where 1 ≤ n ≤ 3, is a bounded Lipschitz domain,

• B ∈ L(U ;L2(Ω)), where the control space U is a Banach space, and b ∈ L2(Ω),

• A ∈ L(H1
0 (Ω);H

−1(Ω)) with A−1 ∈ L(H−1(Ω);H1
0 (Ω)), and additionally, the

mapping y 7→ Ay defines a bounded, injective and surjective operator from
the state space Y = H1

0 (Ω) ∩H2(Ω) to L2(Ω). As a consequence, v 7→ A−1v
defines the solution operator S ∈ L(L2(Ω);Y ). See also Remark 3.41 below.

For the upper bound ψ in the state constraint we suppose ψ ∈ C(Ω), and we describe
the state constraint by

Ey − ψ ∈ K−

with the well-known cone of nonnegative functions in C(Ω)

K− =
{
q ∈ C(Ω) : q(x) ≤ 0 for all x ∈ Ω

}
and the embedding E ∈ L(Y ;C(Ω)) granted by the Sobolev embedding theorem.
It will be crucial that intK− ̸= ∅ in C(Ω). Together with the state equation
E : Y × U → L2(Ω) given by E(y, u) = Ay − Bu − b, we collect all constraints in
the function G : X → Z by setting X = Y × U and Z = L2(Ω)× C(Ω) and G(x) =(
E(y,u)
Ey−ψ

)
∈ K with K = {0L2(Ω)} ×K− and x = (y, u) ∈ X. Then G1(x) = E(y, u)

and G2(x) = Ey − ψ.
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Since intK− ̸= ∅ in C(Ω), by (3.5) in Proposition 3.19 the following linearized
Slater-type assumption will be sufficient for RCQ at any feasible point (ȳ, ū) for this
problem: There exist û ∈ U and ŷ ∈ Y with Aŷ = Bû + b and E ŷ − ψ < 0 on Ω,
so (ŷ, û) is feasible for the equality constraint and satisfies the inequality constraint
strictly.

Indeed, since E ′y(ȳ, ū) = A : Y → L2(Ω) is continuously invertible, it is in particular
surjective, and so is E ′(ȳ, ū) = G′1(x) for all x̄ = (ȳ, ū) ∈ Y × U = X. Let
(ȳ, ū) ∈ Y × U be an arbitrary feasible pair. Then (z, h) := (ŷ − ȳ, û− ū) satisfies

E ′(ȳ, ū)(z, h) = Az −Bh = Aŷ −Bû−
(
Aȳ −Bū

)
= b− b = 0.

Hence, we have (z, h) ∈ kerE ′(ȳ, ū) = kerG′1(x̄). In particular,

G1(x̄) +G′1(x̄)(z, h) = 0 + 0 = 0.

Moreover, from E ŷ − ψ ∈ intK− we infer

G2(x̄) +G′2(x̄)(z, h) = E ȳ − ψ + Ez = E ŷ − ψ ∈ intK−.

In (3.5) in Proposition 3.19 we have seen that surjectivity of E ′(ȳ, ū) = G1(x̄) and the
existence of (z, h) ∈ Y × U with G1(x̄) +G′1(x̄)(z, h) = 0 and G2(x̄) +G′2(x̄)(z, h) ∈
intK− is sufficient for (in fact, even equivalent to) RCQ.

Hence, under the assumption that (ŷ, û) as above exists and letting J : Y × U → R
be F-differentiable, we obtain a KKT characterization of any locally optimal control
(ȳ, ū) for the problem

min
(y,u)∈Y×U

J(y, u) s.t. Ay = Bu+ b, y ≤ ψ

as follows:

There exist p̄ ∈ L2(Ω)∗ = L2(Ω) and µ̄ ∈ C(Ω)∗ such that

J ′y(ȳ, ū) + A∗p̄+ E∗µ̄ = 0 in Y ∗,

J ′u(ȳ, ū)−B∗p̄ = 0 in U∗,

Aȳ = Bū+ b in L2(Ω),

E ȳ − ψ ≤ 0 in C(Ω),

µ̄ ∈ T (K−, E ȳ − ψ)◦ = K◦− ∩ (E ȳ − ψ)⊥ in C(Ω)∗,

where the last equality follows from Lemma 3.32, since K− is a closed convex cone.

The last conditions can be rewritten as a complimentarity condition

E ȳ − ψ ≤ 0, µ̄ ∈ K◦−,
〈
µ̄, E ȳ − ψ

〉
C(Ω)∗,C(Ω)

= 0.
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Here, one can show [La93, Ch. IX, Thm. 4.2] that there indeed holds C(Ω)∗ =M(Ω),
where M(Ω) is the space of (real, signed) regular Borel measures on Ω with the total
variation norm

∥µ∥M(Ω) := |µ|(Ω) = sup
∥v∥C(Ω)≤1

∫
Ω

v(x) dµ(x).

Thereby, the dual pairing of µ ∈M(Ω) = C(Ω)∗ with f ∈ C(Ω) is given by

〈
µ, f

〉
M(Ω),C(Ω)

=

∫
Ω

f(x) dµ(x).

Further, µ̄ ∈ K◦− means that µ̄ ≥ 0 in the sense of ⟨µ̄, q⟩ ≤ 0 for all functions q ∈ K−.

From these properties it follows that the above complementarity condition can be
written as

E ȳ − ψ ≤ 0, µ̄ ≥ 0, µ̄
(
[E ȳ − ψ < 0]

)
= 0,

so that the support of µ̄ is concentrated on [E ȳ = ψ]. In particular,

T (K−, E ȳ − ψ)◦ = K◦− ∩ (E ȳ − ψ)⊥ =
{
µ ∈M(Ω) : µ ≥ 0, µ

(
[E ȳ − ψ < 0]

)
= 0
}
.

Remark 3.41. The regularity assumptions onA in Example 3.40 are to be understood
as follows: The basic assumption says that for every f ∈ H−1(Ω), there exist a
unique y ∈ H1

0 (Ω) such that Ay = f and a constant C > 0 independent of f such
that ∥y∥H1

0 (Ω
≤ C∥f∥H−1(Ω).

This is the classical result obtained by the Lax-Milgram lemma for large classes
of elliptic partial differential operators [Br10, Ch. 5.3], such as exemplarily the
divergence-gradient operators y 7→ − div(µ∇y), complemented with homogeneous
Dirichlet boundary conditions, in their weak form given by〈

Ay, φ
〉
=

∫
Ω

(
µ∇y

)
· ∇φ dx for φ ∈ H1

0 (Ω),

where µ ∈ L∞(Ω;Rn×n) takes its values in the space of n× n-matrices and satisfies
the coercivity- or ellipticity condition: There exists α > 0 such that

vTµ(x)v ≥ α∥v∥22 for all v ∈ Rn for almost all x ∈ Ω.

(Compare also with the weak form of the negative Laplacian −∆, so the divergence-
gradient operator with µ being the n× n-identity matrix, in Example 2.9.) See the
exercises.

Since the underlying partial differential operators are of order two, the assumption
A−1 ∈ L(H−1(Ω);H1

0 (Ω)) can be seen as a maximal Sobolev regularity result in
the sense that A and A−1 operate exactly between Sobolev spaces with a gap of
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differentiability of order two, namely H1
0 (Ω) and H

−1(Ω). The particular power of
the Lax-Milgram lemma manifests in the fact that a second-order elliptic partial
differential operator will always have this nice property with respect to the Hilbert
spaces H1

0 (Ω) and H
−1(Ω).

The additional assumption on A then requires the following: If the right-hand side
f in the equation Ay = f is actually from the better space L2(Ω) ↪→ H−1(Ω), then
this additional L2-regularity for the data implies additional H2-regularity for the
state y, so y ∈ H1

0 (Ω) ∩H2(Ω) with a continuous dependence of y on f , in the sense
of the existence of a constant C > 0 independent of f such that

∥y∥H1
0 (Ω) + ∥y∥H2(Ω) ≤ C∥f∥L2(Ω).

Of course, this additional assumption is again a maximal Sobolev regularity property,
but unfortunately, proving such a property is quite difficult, even for the Laplacian.
It can be shown, e.g., if Ω is of class C1,1 and the coefficients µij of the operator A
are uniformly continuous on Ω, cf. [GT01, Thm. 9.15].

Remark 3.42. In the foregoing Example 3.40, consider again the KKT condition or
adjoint equation

A∗p̄+ E∗µ̄ = −J ′y(ȳ, ū).

The operator A∗ ∈ L(H1
0 (Ω);H

−1(Ω)) ∩ L(L2(Ω);Y ∗) can also be considered as a
linear elliptic second-order partial differential operator. (Also, since A is continuously
invertible, so is A∗.) Thus, the foregoing adjoint equation is also a linear elliptic
second-order elliptic PDE for the adjoint state p̄ which however involves the measure
µ̄. One must thus deal with differential equations with measure data in the context of
state constraints in optimal control problems. On the other hand, from Example 3.40
we know that µ̄ is not a totally generic measure; for example, we had seen that µ̄ ≥ 0.
Often it is possible to can leverage such additional structural information in PDE
analysis.

The presence of the state constraint y ≤ ψ is also the reason why we have introduced
the space Y = H2(Ω) ∩H1

0 (Ω) and thus also why we end up with the above adjoint
equation in Y ∗. (This amounts to a very weak formulation for the problem at
hand). In particular, for the right hand side in the adjoint equation, we only have
J ′y(ȳ, ū) ∈ Y ∗ in general. But if J in fact is already F-differentiable from Y0×U to R,
where Y is densely embedded into Y0—for instance, if Y0 = H1

0 (Ω) or Y0 = L2(Ω)—,
then J ′y(ȳ, ū) ∈ Y ∗0 ↪→ Y ∗ and additional regularity for the adjoint state p̄ may
be derived from the adjoint equation. We have seen this also in Example 3.39
where the adjoint state p̄ was the weak solution to a linear elliptic equation with
J ′y(ȳ, ū) = ȳ − yd ∈ L2(Ω) on the right-hand side. In the present case however, the
regularity of p̄ is limited by the presence of the measure µ̄, so we will not be able to
obtain full regularity in general.
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Note that a similar effect can also occur for the optimal control ū from the KKT
condition J ′u(ȳ, ū) = B∗p̄, since often J ′u(ȳ, ū) = βū for some β > 0. Then

J ′u(ȳ, ū) = B∗p̄ ⇐⇒ ū =
1

β
B∗p̄.

See Example 3.39 for the particular example, and also the exercises.

January 25, 2023
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3.3 Sufficient optimality conditions

The KKT conditions give a satisfying characterization of (first-order) necessary optimality
conditions. Of course, we are also interested in sufficient conditions. Such conditions
often include that the optimal point in question is an isolated optimum, which is an
extremely useful property in the numerical analysis of optimal control problems.

We will however see that the situation is quite more delicate than in the finite-dimensional
case and that the standard second-order sufficient condition from Nonlinear Optimization
will in general not be sufficient in infinite-dimensional settings any more. We begin with
the particular and important case of a convex problem, where everything still works out
just fine.

3.3.1 The convex case

In the convex case, the KKT conditions alone already turn out to be also sufficient for
global optimality:

Theorem 3.43. Let X and Z be Banach spaces. Suppose that f : X → R is convex
and F-differentiable, G : X → Z is F-differentiable and convex w.r.t. −K, where K
is a closed convex cone. Further, let x̄ ∈ F = G−1[K] be a KKT-point of (P), so
Λ(x̄) ̸= ∅. Then x̄ is a global solution of (P).

Proof. Recall from (3.19) that since f : X → R and G : X → Z are convex—the latter
w.r.t. ≤K—, we have the inequality

f(x)− f(x̄) ≥ ⟨f ′(x̄), x− x̄⟩X∗,X for all x ∈ X

and the inclusion

G(x̄)−G(x) +G′(x̄)(x− x̄) ∈ K for all x ∈ F

at hand. Now, for x ∈ F , we have K +G(x) ⊂ K since K is a convex cone, and hence

G′(x̄)(x− x̄) ∈
(
K +G(x)

)
−G(x̄) ⊂ K −G(x̄) ⊂ cone(K,G(x̄)) ⊂ T (K,G(x̄))
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for all x ∈ F . (Recall Lemma 3.8.) But then optimality of x̄ is immediate from the KKT
conditions (3.15) and (3.16) for all x ∈ F as follows:

f(x)− f(x̄) ≥ ⟨f ′(x̄), x− x̄⟩X∗,X = −
〈
G′(x̄)∗λ̄, x− x̄

〉
X∗,X

= −
〈
λ̄, G′(x̄)(x− x̄)

〉
Z∗,Z

≥ 0,

since G′(x̄)(x− x̄) ∈ T (K,G(x̄)) and λ̄ ∈ T (K,G(x̄))◦ as seen above.

Remark 3.44. Note that we have only supposed Λ(x̄) ̸= ∅ in Theorem 3.43 instead
of x̄ regular, i.e., we have not needed a constraint qualification.

3.3.2 Second-order sufficient optimality conditions

We next use second-order derivative—so: curvature—information to formulate sufficient
optimality conditions, also in the case of a nonconvex problem. Already in high school
we learn that if f : R → R and we have a point x̄ ∈ R with f ′(x̄) = 0 and f ′′(x̄) > 0,
then x̄ is a minimum of f–this is a second-order sufficient optimality condition! Note
that such a curvature condition for x̄ will also imply that x̄ is a strict (and thus isolated)
local minimum and that the function grows at least quadratically around x̄, that is, for
ε > 0 sufficiently small, there is a γ > 0 such that

f(x) ≥ f(x̄) + γ∥x̄− x∥2 for all x ∈ Bε(x̄).

Of course, when aiming for sufficient conditions, we can freely assume that the designated
optimal solution x̄ ∈ F satisfies necessary optimality conditions. We will thus consider
only KKT-points x̄ in the following.

Reminder: The second derivative h′′(x̄) of a twice F-differentiable function h : X → Z
is given by the F-derivative of the mapping h′ : X → L(X;Z), and is thus a mapping

h′′ : X → L
(
X;L(X;Z)

) ∼= L2(X ×X;Z),

where L2(X×X;Z) denotes the space of continuous bilinear forms on X×X mapping
into Z. This is compatible with the notion of the Hessian matrix for X = Rn and
Z = R, since there is a one-to-one correspondence between bilinear forms on Rn × Rn

and matrices Rn×n.

We want to pose a positive definiteness condition on second-order derivatives in x̄. It
is clear that it will not be necessary to require such a condition on the whole space X
but only in certain directions from a tangent cone at the designated optimal point x̄. (A
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function whose second derivatives at every point are positive definite on the whole X
would be convex.)

The intuition here could be as follows: Given a KKT-point x̄, we have (Lemma 3.30)〈
f ′(x̄), d

〉
X∗,X

≥ 0 for all d ∈ Tℓ(G,K, x̄).

If we want to pose additional assumptions in certain directions d ∈ Tℓ(G,K, x̄), then
the directions for which ⟨f ′(x̄), d⟩X∗,X > 0 should not be a problem for optimality since
f “strictly” increases in these directions. It should thus be enough to consider only
directions in Tℓ(G,K, x̄) for which the directional derivative of f is nonpositive.

This leads to the following definition of the critical cone as a subset of the linearizing
cone:

Definition 3.45 (Critical cone). The critical cone at x̄ ∈ F is defined by

C(x̄) =
{
d ∈ Tℓ(G,K, x̄) : ⟨f ′(x̄), d⟩X∗,X ≤ 0

}
.

In fact, for a KKT-point x̄, we have (Lemma 3.30)〈
f ′(x̄), d

〉
X∗,X

≥ 0 for all d ∈ Tℓ(G,K, x̄).

Accordingly, in this case, the critical cone becomes

C(x̄) =
{
d ∈ Tℓ(G,K, x̄) : ⟨f ′(x̄), d⟩X∗,X = 0

}
. (3.23)

Since we will generally suppose that x̄ is a KKT point in the following, we could have
defined the critical cone also in the latter form. However, the original definition as
in Definition 3.45 will generalize more nicely later when we will have to readjust it a
little bit.

Now, regarding which condition we actually pose along C(x̄), recall that the first part (3.9)
of the KKT conditions could be rewritten to L′x(x̄, λ̄) = 0 in X∗ with the Lagrangian
function L as in Definition 3.31. Thus, in order to formulate a sufficient condition for a
given KKT point x̄ to be a local solution, so a minimizer, it is natural to require that
there are no directions of nonpositive curvature w.r.t. x of the Lagrangian function in
C(x̄); that is,

L′′xx(x̄, λ̄)(d, d) > 0 for all d ∈ C(x̄) \ {0}. (3.24)

This is the classical second-order sufficient condition (SOSC) from Nonlinear Optimization.
It is not sensible to pose a condition on the curvature of the objective function only;
this is already true for finite-dimensional problems, see Figure 2. (The example is taken
from [UU12, P. 103].) It is also imperative to compare the classical SOSC (3.24) with the
classical necessary second-order condition which says that a locally optimal KKT-point
x̄ satisfies

L′′xx(x̄, λ̄)(d, d) ≥ 0 for all d ∈ C(x̄).
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(Unfortunately, the proof of such a necessary second-order condition in infinite dimensions
is very hard and only known for particular cases; even the proof for finite-dimensionsal
problems is not very pleasant.) Clearly, the classical SOSC (3.24) admits the minimal
possible gap between second-order conditions of necessary and sufficient type.

x

1.0 0.5 0.0 0.5 1.0

y

0.0

0.5

1.0

Figure 2: The graph of f(x, y) = −x2 + 2y. The black line indicates the boundary of the
feasible set F defined by g(x, y) = x2 − y ≤ 0. The minimum of f over F is
x̄ = 0 which is a KKT-point with multiplier λ̄ = 2. The critical cone in x̄ is
C(x̄) = R × {0}. Clearly, the curvature of f along C(x̄) is nonpositive, but
L′′xx(x̄, λ̄) is positive definite along C(x̄) \ {0} and (3.24) is satisfied.

However, unfortunately, the next example shows that the classical condition (3.24) is
in general not strong enough for general infinite-dimensional optimization problems to
indeed obtain a sufficient optimality condition.

Example 3.46. Let X = Z = ℓ2, where ℓ2 = ℓ2(R) is the Hilbert space of R-valued
square summable sequences whose inner product and norm are given by

(x, y)ℓ2 :=
∞∑
i=1

xiyi, so ∥x∥ℓ2 =

(
∞∑
i=1

x2i

)1/2

.

Consider the infinite-dimensional optimization problem

min
x∈ℓ2

(c, x)ℓ2 − (x, x)ℓ2 s.t. xi ≥ 0 for all i ∈ N

with the objective function f(x) = (c, x)ℓ2−(x, x)ℓ2 , where c ∈ ℓ2 satisfies ci > 0 for all
i ∈ N. The constraints are given byG(x) ∈ K withK = {x ∈ ℓ2 : xi ≥ 0 for all i ∈ N}
and G(x) = x, the identity mapping. (Hence F = K.)
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Since G′(x) = idℓ2 is clearly surjective for all x ∈ ℓ2, RCQ holds in every feasible
x ∈ K, see Proposition 3.19.

We consider x̄ = 0 and claim that it is a KKT point with −c being the unique
Lagrange multiplier, so {−c} = Λ(x̄) ̸= ∅. First, concerning the multiplier rule (3.9)
in the KKT conditions, observe that f ′(x̄) ∈ (ℓ2)∗ can be identified with c− 2x̄ ∈ ℓ2.
(This is the Fréchet-Riesz representation theorem; in fact, we can regard c− 2x̄ as
the gradient ∇f(x̄).) Hence, for λ̄ to be a Lagrange multiplier for x̄ = 0, we calculate

f ′(x̄) +G′(x̄)∗λ̄ = c− 2x̄+ λ̄ = c+ λ̄
!
= 0 ⇐⇒ λ̄ = −c,

so −c is the unique candidate for an element of Λ(x̄). Further,

T (K,G(x̄)) = T (K, 0) = cone(K, 0),= K.

so from (c, d)ℓ2 ≥ 0 for all d ∈ K it follows that −c ∈ K◦ = T (K,G(x̄))◦. Hence, in
fact {−c} = Λ(x̄) ̸= ∅.

Next we investigate the proposed sufficient condition (3.24). We have Tℓ(G,K, x̄) =
K, hence, the critical cone C(x̄) is given by

C(x̄) =
{
d ∈ K : (f ′(x̄), d)ℓ2 = 0

}
,

but for all d ∈ K \ {0}, we obtain

(f ′(x̄), d)ℓ2 = (c, d)ℓ2 =
∞∑
i=1

cidi > 0,

since ci > 0 and 0 ̸= d ≥ 0. Therefore, C(x̄) = {0}, so the classical SOSC (3.24)
is indeed satisfied. In fact, we have even seen that all directions d ∈ K \ {0} =
T (F , x̄) \ {0} are strict ascent directions (Aufstiegsrichtungen) for f .

Note however that (verify this!)

L′′xx(x̄, λ̄)(d, d) = f ′′(x̄)(d, d) = −2∥d∥2ℓ2 ≤ 0 for all d ∈ ℓ2.

And indeed, x̄ is not a local minimum of f on F = K: Define a sequence (xk) ⊂ ℓ2

by (xk) := (2δikci)i∈N ⊂ K, so

(xk)i :=

{
2ci if i = k,

0 otherwise.
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Then ∥xk − x̄∥ℓ2 = ∥xk∥ℓ2 = 2ck → 0 as k → ∞, but

f(xk) = 2c2k − 4c2k = −2c2k < 0 = f(x̄),

so x̄ cannot be a local minimum of f on K.

February 1, 2023

14 −→
Now we are at a crossroads how to obtain a sufficient second-order condition for infinite-
dimensional problems. There are essentially two possible ways out:

1. Strengthen the condition (3.24) but keep the general assumptions on (P) as general
as possible, or

2. enforce more structure in the problem (P) but keep condition (3.24).

We will present one theorem for each alternative. But first, we state an auxiliary result
which will be used in either theorem: Under the Robinson CQ, the linearizing cone
Tℓ(G,K, x̄) at x̄ is approximated by feasible directions in the sense that

dist
(
x− x̄, Tℓ(G,K, x̄)

)
= o
(
∥x− x̄∥X

)
(3.25)

for F ∋ x → x̄. This already foreshadows that we will need to suppose that the
KKT-point x̄ is in fact regular.

The approximation property (3.25) is implied by the following lemma:

Lemma 3.47. If the Robinson constraint qualification (3.2) holds at x̄ ∈ F , then
there exists a map h : F → Tℓ(G,K, x̄) with

∥h(x)− (x− x̄)∥X = o
(
∥x− x̄∥X

)
for F ∋ x→ x̄.

Proof. Let x ∈ F be arbitrary. Then the F-differentiability of G implies

G(x) = G(x̄) +G′(x̄)(x− x̄) + r(x), where ∥r(x)∥Z = o
(
∥x− x̄∥X

)
.

Then RCQ in the form of the ZKCQ (3.8) shows that there exists δ > 0 such that

Bδ,Z(0) ⊂ G′(x̄)BX(0)−
(
(K −G(x̄)) ∩BZ(0)

)
.

Hence, we can find s(x) ∈ X and v(x) ∈ K − G(x̄) such that r(x) = G′(x̄)s(x) − v(x)
and (by rescaling)

∥s(x)∥X ≤ ∥r(x)∥Z
δ

= o
(
∥x− x̄∥X

)
, ∥v(x)∥Z ≤ ∥r(x)∥Z

δ
= o
(
∥x− x̄∥X

)
.

Setting h(x) := x− x̄+ s(x), there holds

∥h(x)− (x− x̄)∥X = o
(
∥x− x̄∥X

)
.
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It remains to show that h(x) ∈ Tℓ(G,K, x̄), that is, G
′(x̄)h(x) ∈ T (K,G(x̄)). So:

G′(x̄)h(x) = G′(x̄)(x− x̄) +G′(x̄)s(x)

= G′(x̄)(x− x̄) + r(x) + v(x)

= G(x)−G(x̄) + v(x)

Writing v(x) ∈ K −G(x̄) in the form v(x) = k(x)−G(x̄) with k(x) ∈ K, we have

G′(x̄)h(x) = 2

(
G(x) + k(x)

2︸ ︷︷ ︸
∈K

−G(x̄)

)
∈ cone(K,G(x̄)).

Hence, G′(x̄)h(x) ∈ cone(K,G(x̄)) ⊂ T (K,G(x̄)) and so h(x) ∈ Tℓ(G,K, x̄), and h has
all required properties.

Remark 3.48. It is also possible to prove the approximation property (3.25) directly
via metric regularity, Theorem 3.20, and to construct the function h as in Lemma 3.47
from there. See the exercises.

We next prove the theorems as announced above.

Stronger SOSC: In the foregoing Example 3.46, the condition (3.24) is not sufficient
for optimality of a KKT point because the critical cone C(x̄) is too small. Thus, part of
a solution to obtain a sufficient condition would be to enlarge the critical cone C(x̄), so
make (3.24) stronger.

Definition 3.49 (Approximate critical cone). For η ≥ 0 we define the η-approximate
critical cone at x̄ ∈ F by

Cη(x̄) =
{
d ∈ Tℓ(G,K, x̄) : ⟨f ′(x̄), d⟩X∗,X ≤ η∥d∥X

}
.

Note that C0(x̄) = C(x̄) and Cη(x̄) = Tℓ(G,K, x̄) for all η ≥ ∥f ′(x̄)∥X∗ .

We now prove a very general theorem about second-order sufficient conditions which
needs very little structural properties of (P). The proof rests on Taylor expansion for
the Lagrange function and Lemma 3.47. For convenience, we will use the shorthand
notation d2 for directions (d, d) in second derivatives, so for example f ′′(x̄)d2 instead of
f ′′(x̄)(d, d).

Theorem 3.50 (Second-order sufficient conditions). Let X and Z be Banach spaces
with K ⊂ Z closed and convex. Further, let f : X → R and G : X → Z be twice
F-differentiable. Assume that x̄ ∈ F = G−1[K] satisfies the RCQ (3.2) and the
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KKT-conditions with multiplier λ̄:

f ′(x̄) +G′(x̄)∗λ̄ = 0,

G(x̄) ∈ K, λ̄ ∈ T (K,G(x̄))◦.

Let in addition the following second-order condition hold:

L′′xx(x̄, λ̄)(d, d) ≥ γ∥d∥2X for all d ∈ Cη(x̄), (3.26)

where γ > 0 and η > 0 are fixed constants. Then x̄ is an isolated local solution of (P)
and there exist κ, δ > 0 such that the quadratic growth condition

f(x) ≥ f(x̄) + κ∥x− x̄∥2X for all x ∈ F ∩Bδ,X(x̄)

holds true.

Proof. Consider x ∈ F ∩ Bδ,X(x̄) for some δ > 0 sufficiently small to be chosen later,
and set d(x) := x− x̄. Note that we do not know whether d(x) ∈ Tℓ(K,G, x̄), so (3.26)
cannot be used for d(x) directly. However, Lemma 3.47 braces us with the approximation
d(x) = h(x) + r(x) where h(x) ∈ Tℓ(K,G, x̄) and ∥r(x)∥X = o(∥d(x)∥X). The plan
is to use h(x) as a surrogate for d(x) in Tℓ(G,K, x̄). To this end, we first note some
approximation properties of h(x), namely (verify those!)

∥h(x)∥X = ∥d(x)∥X + o(∥d(x)∥X). (3.27)

and the quadratic equivalent

∥h(x)∥2X = ∥d(x)∥2X + o
(
∥d(x)∥2X

)
. (3.28)

Now the case where ⟨f ′(x̄), h(x)⟩X∗,X > η∥h(x)∥X is quite easy: Using ⟨f ′(x̄), r(x)⟩X∗,X =
o(∥d(x)∥X), we find

f(x)− f(x̄) =
〈
f ′(x̄), d(x)

〉
X∗,X

+ o
(
∥d(x)∥X

)
=
〈
f ′(x̄), h(x)

〉
X∗,X

+ o
(
∥d(x)∥X

)
> η∥h(x)∥X + o

(
∥d(x)∥X

)
(3.27)
= η∥d(x)∥X + o

(
∥d(x)∥X

)
≥ η∥d(x)∥2X = η∥x− x̄∥2X ,

where the last inequality holds true for δ sufficiently small.

Next we deal with the case ⟨f ′(x̄), h(x)⟩X∗,X ≤ η∥h(x)∥X , so h(x) ∈ Cη(x̄). From the
KKT conditions, we have λ̄ ∈ T (K,G(x̄))◦, so

L(x, λ̄)− L(x̄, λ̄) = f(x)− f(x̄) +
〈
λ̄, G(x)−G(x̄)

〉
Z∗,Z

≤ f(x)− f(x̄), (3.29)
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since G(x)−G(x̄) ∈ T (K,G(x̄)). Moreover, by (3.27) and the construction of r(x), we
have

L′′xx(x̄, λ̄)
(
r(x), h(x)

)
+ L′′xx(x̄, λ̄)

(
h(x), r(x)

)
+ L′′xx(x̄, λ̄)r(x)

2 = o
(
∥d(x))∥2X

)
. (3.30)

Recalling that the first KKT condition means in fact L′x(x̄, λ̄) = 0 in X∗, we thus obtain
by Taylor expansion

f(x)− f(x̄)
(3.29)

≥ L(x, λ̄)− L(x̄, λ̄)

=
〈
L′x(x̄, λ̄), d(x)

〉
X∗,X

+
1

2
L′′xx(x̄, λ̄)

(
d(x), d(x)

)
+ o
(
∥d(x)∥2X

)
=

1

2
L′′xx(x̄, λ̄)

(
h(x) + r(x), h(x) + r(x)

)
+ o
(
∥d(x)∥2X

)
(3.30)
=

1

2
L′′xx(x̄, λ̄)h(x)

2 + o
(
∥d(x)∥2X

)
≥ γ

2
∥h(x)∥2X + o

(
∥d(x)∥2X

)
=
γ

2
∥d(x)∥2X + o(∥d(x)∥2X) ≥

γ

4
∥d(x)∥2X =

γ

4
∥x− x̄∥2X ,

the last inequality again for δ sufficiently small.

The assertion then follows with κ := min(γ
4
, η).

Remark 3.51. One can dispose of the assumption that x̄ satisfies the RCQ if the
feasible set is “flat” enough around x̄ in the sense that there is a δ > 0 such that
for all x ∈ Bδ,X(x̄) we have x − x̄ ∈ Tℓ(G,K, x̄). Indeed, we have only used RCQ
to invoke Lemma 3.47 which provides the substitute h(x) ∈ Tℓ(G,K, x̄) for x − x̄,
because for the latter we do not know in general that it is an element of the linearizing
cone. For example, box constraints are “flat”.

More structural assumptions for (P): Theorem 3.50 works in a very general setting,
which is very nice, but makes it hard to actually verify the conditions in practical
situations. On the other hand, we have posed no further assumptions on f and G or
even the geometry of the Banach space X at all, so there might be room to strengthen
assumptions there and weaken condition (3.26). Indeed, it is possible to derive second-
order sufficient conditions in the classical form (3.24) under more specific assumptions
on f and G, if X is reflexive. These conditions are met by many problems subject to
PDEs or, generally, by optimal control problems.

Theorem 3.52. Let X and Z be Banach spaces with K ⊂ Z closed and convex
and X reflexive. Further, let f : X → R be given in the form f = f1 + f2 with
f1, f2 : X → R, and let f1, f2 and G : X → Z be twice F-differentiable. Assume that
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x̄ ∈ F = G−1[K] satisfies the RCQ (3.2) and the KKT-conditions with multiplier λ̄:

f ′(x̄) +G′(x̄)∗λ̄ = 0,

G(x̄) ∈ K, λ̄ ∈ T (K,G(x̄))◦.

Further, suppose that the second derivatives exhibit the following weak continuity
properties: If dk ⇀ d in X, then, for i = 1, 2,

f ′′i (x̄)d
2 ≤ lim inf

k→∞
f ′′i (x̄)d

2
k and G′′(x̄)d2k ⇀ G′′(x̄)d in Z.

Let in addition d 7→ f ′′2 (x̄)d
2 be coercive on the linearizing cone, that is, there exists

a constant α > 0 such that

f ′′2 (x̄)d
2 ≥ α∥d∥2X for all d ∈ Tℓ(G,K, x̄),

and suppose that the classical SOSC is satisfied:

L′′xx(x̄, λ̄)d
2 > 0 for all d ∈ C(x̄) \ {0}. (3.24)

Then x̄ is an isolated local solution of (P) and there exist κ, δ > 0 such that the
quadratic growth condition

f(x) ≥ f(x̄) + κ∥x− x̄∥2X for all x ∈ F ∩Bδ,X(x̄)

holds true.

Proof. Let x̄ be as in the theorem and let λ̄ ∈ Λ(x̄) its associated Lagrange multiplier.
We argue by contradiction, so suppose that the quadratic growth condition is wrong.
Then there exists a sequence (xk) ⊆ F such that xk → x̄ and

1

k
∥xk − x̄∥2X ≥ f(xk)− f(x̄).

Set

dk :=
xk − x̄

∥xk − x̄∥X
.

Since X is assumed to be reflexive, (dk) admits a weakly convergent subsequence, which
we do not relabel, with the weak limit dk ⇀ d ∈ X. We show that d ∈ C(x̄) and use the
SOSC to derive that d = 0. This will give a contradiction with the coercivity of f ′′2 (x̄).

Let h : F → Tℓ(G,K, x̄) be the map established in Lemma 3.47 (here we use the
assumption that x̄ is regular) and set hk := h(xk). Then〈

x′, hk
〉
X∗,X

=
〈
x′, xk − x̄

〉
X∗,X

+ o
(
∥xk − x̄∥X

)
,

for any x′ ∈ X∗, so

gk :=
hk

∥xk − x̄∥X
⇀ d.
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The linearizing cone Tℓ(G,K, x̄) is closed and convex (Remark 3.12 and Theorem 3.22),
hence weakly closed, and we find d ∈ Tℓ(G,K, x̄) (Proposition 2.3). Moreover, from the
above contradiction assumption,

1

k
∥xk − x̄∥2X ≥ f(xk)− f(x̄) =

〈
f ′(x̄), xk − x̄

〉
X∗,X

+ o
(
∥xk − x̄∥X

)
=
〈
f ′(x̄), hk

〉
X∗,X

+ o
(
∥xk − x̄∥X

)
,

so by dividing by ∥xk − x̄∥X and letting k → ∞, we obtain that ⟨f ′(x̄), d⟩X∗,X ≤ 0 and
d ∈ C(x̄).

Recall that λ̄ ∈ T (K,G(x̄))◦, so with G(xk) − G(x̄) ∈ cone(K,G(x̄)) ⊆ T (K,G(x̄))
(Lemma 3.8), there holds 〈

λ̄, G(xk)−G(x̄)
〉
Z∗,Z

≤ 0.

In particular, again from the contradiction assumption,

1

k
∥xk − x̄∥2X ≥ f(xk)− f(x̄) ≥ f(xk)− f(x̄) +

〈
λ̄, G(xk)−G(x̄)

〉
Z∗,Z

= L(xk, λ̄)− L(x̄, λ̄).

Of course we will use Taylor expansion for the latter term to get higher derivatives
involved:

L(xk, λ̄)− L(x̄, λ̄) =
〈
L′x(x̄, λ̄), xk − x̄

〉
X∗,X

+ L′′xx(x̄, λ̄)(xk − x̄)2 + o
(
∥xk − x̄∥2X

)
.

The first derivative vanishes since x̄ is a KKT point and λ̄ is the associated multiplier.
In the second derivative, we substitute with hk instead of xk − x̄ at the cost of an error
of o(∥xk − x̄∥2X):

L′′xx(x̄, λ̄)(xk − x̄)2 = L′′xx(x̄, λ̄)h
2
k + o

(
∥xk − x̄∥2X

)
to altogether obtain

1

k
≥ L′′xx(x̄, λ̄)g

2
k +

o
(
∥xk − x̄∥2X

)
∥xk − x̄∥2X

.

From the assumptions, the map h 7→ L′′xx(x̄, λ̄)h
2 = f ′′(x̄)h2 + ⟨λ̄, G′′(x̄)h2⟩ is weakly

lower semicontinuous, thus (recall gk ⇀ d)

0 ≥ lim inf
k→∞

[
L′′xx(x̄, λ̄)g

2
k +

o
(
∥xk − x̄∥2X

)
∥xk − x̄∥2X

]
= lim inf

k→∞
L′′xx(x̄, λ̄)g

2
k ≥ L′′xx(x̄, λ̄)d

2.

But then the SOSC (3.24) implies that d = 0.

Now finally, let α > 0 be the coercivity parameter for f ′′2 (x̄). Note that also h 7→
L′′xx(x̄, λ̄)h

2 − f ′′2 (x̄)h
2 is weakly lower semicontinuous. Thus, with gk ⇀ d = 0,

0 = L′′xx(x̄, λ̄)d
2 − f ′′2 (x̄)d

2 ≤ lim inf
k→∞

[
L′′xx(x̄, λ̄)g

2
k − f ′′2 (x̄)g

2
k

]

55



Optimization with PDEs

and so

α ≤ α lim inf
k→∞

∥dk∥2X = α lim inf
k→∞

∥gk∥2X ≤ lim inf
k→∞

f ′′2 (x̄)g
2
k

≤ lim inf
k→∞

[
L′′xx(x̄, λ̄)g

2
k − f ′′2 (x̄)g

2
k

]
+ lim inf

k→∞
f ′′2 (x̄)g

2
k

≤ lim inf
k→∞

L′′xx(x̄, λ̄)g
2
k = 0.

But this is a contradiction to α > 0.

Remark 3.51 about disposing of the RCQ assumption for x̄ applies also to the foregoing
Theorem 3.52.February 8, 2023

15 −→

Remark 3.53. The assumptions on the coercive part f2 in the objective function
in Theorem 3.52 typically follow from a “control cost” term in the optimal control
formulation which usually takes the form of a (squared and scaled) norm. For
example, in the running example Example 2.9, we had α

2
∥u∥2L2(∂Ω). (Verifying the

coercivity assumption in the case of x = (y, u) still requires some reasoning and
identification of the linearizing cone, though.) The assumptions on f2 and G will
usually require to employ compactness methods. See Example 3.55 below.

Remark 3.54. Due to the particular structural assumptions in Theorem 3.52, in
this setting the classical SOSC (3.24) is in fact equivalent to the uniform SOSC
which requires that there exists γ > 0 such that

L′′xx(x̄, λ̄)d
2 ≥ γ∥d∥2X for all d ∈ C(x̄). (3.31)

Of course, (3.31) always implies (3.24), but the reverse is in general false in infinite-
dimensional spaces. (In finite-dimensional spaces, γ in (3.31) is related to the finite
set of eigenvalues of L′′xx(x̄, λ̄) of which there must exist a smallest one; in infinite
dimensions that need not be true at all.) But here the classical SOSC (3.24) is in
fact sufficient for (3.31). Indeed, set

γ := inf
∥d∥X=1
d∈C(x̄)

L′′xx(x̄, λ̄)d
2

and consider an infimal sequence (dk) with dk ∈ C(x̄) and ∥dk∥X = 1 such that
γ = limk→∞ L

′′
xx(x̄, λ̄)d

2
k. Then, after passing to a subsequence, dk ⇀ d in X. We

show that γ > 0.

1. If d = 0, then at the end of the proof of Theorem 3.52) we have seen that since
dk ⇀ d = 0,

α ≤ lim
k→∞

L′′xx(x̄, λ̄)d
2
k.
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But the limit is exactly γ, by construction, so γ ≥ α > 0.

2. If d ̸= 0, then already from weak lower semicontinuity of L′′xx(x̄, λ̄) we have

0 < L′′xx(x̄, λ̄)d
2 ≤ lim inf

k→∞
L′′xx(x̄, λ̄)d

2
k = γ.

Example 3.55. Consider the setting of Example 2.9 and Example 3.39 for the
semilinear optimal control problem. We verify the assumptions on second derivatives
in Theorem 3.52. In the example we had

G(x̄) =

(
E(ȳ, ū)
ū

)
and G′(x̄)d =

(
E ′y(ȳ, ū)z + E ′u(ȳ, ū)h

h

)
where d = (z, v) ∈ Y × U = H1(Ω)× L2(∂Ω) and

E ′y(ȳ, ū)z :
[
v 7→ (∇z,∇v)L2(Ω)n + (z, v)L2(∂Ω) + 3(ȳ2z, v)L2(Ω)

]
∈ H1(Ω)∗,

and E ′u(ȳ, ū)h = −(·, h)L2(∂Ω). Note that neither derivative depends on ū any more,
since the control was entering the original problem linearly. Thus, when taking
another derivative with respect to x = (y, u) in direction d = (z, h), all derivatives in
u direction vanish and we obtain

G′′(x̄)d2 =

(
E ′yy(ȳ, ū)z

2

0

)
with

E ′′yy(ȳ, ū)z
2 :
[
v 7→ 6(ȳz2, v)L2(Ω)

]
∈ H1(Ω)∗.

We show that z 7→ E ′′yy(ȳ, ū)z
2 is weakly continuous as a mapping H1(Ω) → H1(Ω)∗.

Note that for every v ∈ H1(Ω) ↪→ L6(Ω) (because n ≤ 3), we find that ȳv ∈ L3(Ω)
(Hölder’s inequality!), thus by duality[

w 7→
∫
Ω

ȳwv dx
]

is an element of L(L3/2(Ω),R).

Now, let (zk) ⊆ H1(Ω) be a sequence with zk ⇀ z in H1(Ω). Then, since the
embedding H1(Ω) ↪→ L3(Ω) is compact, zk → z in L3(Ω) and z2k → z2 in L3/2(Ω).
(The latter follows from continuity of the t 7→ |t|3/2 superposition operator, recall the
exercises.) Hence, from the above,

〈
E ′′yy(ȳ, ū)z

2
k, v
〉
=

∫
Ω

ȳz2kv dx −→
∫
Ω

ȳz2v dx =
〈
E ′′yy(ȳ, ū)z

2, v
〉

57



Optimization with PDEs

for every v ∈ H1(Ω) and this is the desired weak continuity. It follows that d 7→
G′′(x̄)d2 is weakly continuous as in the assumptions of Theorem 3.52.

We next turn to the second derivatives of f . Set

f1(x) =
1

2
∥y − yd∥2L2(Ω) and f2(x) =

α

2
∥u∥2L2(∂Ω).

The first-order derivatives of f(x) = J(y, u) were already calculated in Example 3.39.
From there, we find, again with d = (z, h),

f ′′1 (x̄)d
2 = J ′′yy(ȳ, ū)z

2 = (z, z)2L2(Ω) = ∥z∥2L2(Ω)

and

f ′′2 (x̄)d
2 = J ′′uu(ȳ, ū)h

2 = α(h, h)2L2(∂Ω) = α∥h∥2L2(∂Ω).

There is no z component in f ′′2 (x̄)d
2, so we have to recover the coercivity assumption

on f ′′2 (x̄) from the linearizing cone. One might be tempted to conjecture that setting
f1(x̄) = 0 and f2(x̄) = f(x̄) would have been more easy since then a squared norm
of z would have occurred in f ′′2 (x̄). But ∥z∥2L2(Ω) is not coercive with respect to

Y = H1(Ω), so there is nothing gained. In fact, we can make do with f2 as defined.

Indeed, suppose that d ∈ Tℓ(G,K, x̄). In Example 3.38, we had seen that with
K = {0}H1(Ω)∗ ×Uad, there was T (K,G(x̄)) = {0}H1(Ω)∗ ×T (Uad, ū) and T (Uad, ū) =

cone(Uad, ū). By definition, the condition that d = (z, h) ∈ Tℓ(G,K, x̄) means that
G′(x̄)d ∈ T (K,G(x̄)), so with the above formula for G′(x̄)d, we obtain the conditions
that

h ∈ cone(Uad, ū) and E ′y(ȳ, ū)z = −E ′u(ȳ, ū)h.

The latter means (recall Example 3.4) that z is the weak solution to

−∆z + 3ȳ2z = 0 on Ω,

∂z

∂ν
+ z = h on ∂Ω.

 (3.32)

In Example 3.39 it was already mentioned that this problem has a unique solution
z ∈ H1(Ω) for every h ∈ L2(∂Ω) ↪→ H1(Ω)∗, and in fact, E ′y(ȳ, ū) is surjective
H1(Ω) → H1(Ω)∗. It is thus in particular continuously invertible—see the open
mapping theorem reminder from the beginning of Section 3.2—, so if d = (z, h) ∈
Tℓ(G,K, x̄), then there exists a constant C > 0 such that

∥z∥H1(Ω) ≤ C∥h∥H1(Ω)∗ ≤ C∥h∥L2(∂Ω).
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But then, going back to the second derivative of f2, we find

f ′′2 (x̄)d
2 = α∥h∥2L2(∂Ω) ≥

α

2
∥h∥2L2(∂Ω) +

α

2C2
∥z∥2H1(Ω) ≥ ᾱ∥d∥2X ,

for some ᾱ > 0, since X = H1(Ω)× L2(∂Ω). Thus d 7→ f ′′2 (x̄)d
2 is indeed coercive

on Tℓ(G,K, x̄).

Now finally it remains to observe that if dk = (zk, hk)⇀ (z, h) in H1(Ω)× L2(∂Ω),
then zk → z in L2(Ω) due to compact embedding, hence

f1(x̄)d
2
k = ∥zk∥2L2(Ω) −→ ∥z∥2L2(Ω) = f1(x̄)d

2

and
lim inf f2(x̄)d

2
k = α∥hk∥2L2(∂Ω) ≥ α∥h∥2L2(∂Ω)

since norms are the prime example of weakly lower semicontinuous functions.

Now assume that (ȳ, ū) is a KKT-point. Then, as derived in Example 3.39,

ū(x) = proj[a(x),b(x)]

( 1
α
p̄(x)

)
=


a(x) if 1

α
p̄(x) ≤ a(x),

1
α
p̄(x) if a(x) < 1

α
p̄(x) < b(x),

b(x) if 1
α
p̄(x) ≥ b(x).

with the unique weak solution p̄ ∈ H1(Ω) to

−∆p̄+ 3ȳ2p̄ = yd − ȳ on Ω,

∂p̄

∂ν
+ p̄ = 0 on ∂Ω.

We calculate the critical cone C(x̄) = C(ȳ, ū). It was already derived that d = (z, h)
is in the linearizing cone Tℓ(G,K, x̄) if and only if h ∈ cone(Uad, ū), that is, h|[ū=a] ≥ 0
and h|[ū=b] ≤ 0, and z ∈ H1(Ω) is the weak solution to (3.32). Further,

f ′(x̄)d = J ′y(ȳ, ū)z + Ju(ȳ, ū)h =
(
ȳ − yd, z

)
L2(Ω)

+ α
(
ū, h
)
L2(∂Ω)

!
= 0.

But, since p̄ is the weak solution to the problem with yd − ȳ on the right-hand side
as above, and z is the weak solution with boundary data h,(

ȳ − yd, z
)
L2(Ω)

= −
(
∇p̄,∇z

)
L2(Ω)

− 3
(
ȳ2p̄, z

)
L2(Ω)

= −
(
p̄, h
)
L2(∂Ω)

.

So f ′(x̄)d = 0 for d = (z, h) ∈ Tℓ(G,K, x̄) precisely when(
p̄, h
)
L2(∂Ω)

= α
(
ū, h
)
L2(∂Ω)

.
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Since ū was given by the pointwise projection of p̄/α onto [a, b], we have p̄ = αū
on [a ≤ p̄/α ≤ b]. Due to the sign conditions of h on [ū = a] ⊃ [p̄/α < a] and
[ū = b] ⊃ [p̄/α > b], we obtain the condition that

h|[p̄/α<a] = h|[p̄/α>b] = 0.

So, (z, h) ∈ C(x̄) precisely when z is the unique solution to (3.32) with data
h ∈ L2(∂Ω) satisfying

h|[ū=a] ≥ 0, h|[ū=b] ≤ 0 and h|[p̄/α<a] = h|[p̄/α>b] = 0.

The resulting SOSC is then given by the requirement that∫
Ω

(1 + 6ȳp̄)z2 dx+ α

∫
∂Ω

h2 dω > 0

for all pairs (z, h) ̸= 0 in the critical cone as before.
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