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Abstract In this study we introduce a new approach to parameter estimation in
continuous time modeling in the spirit of variational data assimilation or machine
learning. This is a purely time-continuous approach relying on the theory of optimiza-
tion for dynamical systems. We complement the proposed algorithm with a practical
example, comparing the results of this approach to those obtained via Continuous
Time Structural Equation Modeling (ctsem). To this end, we assess the reciprocal
relationship between satisfaction with health and satisfaction with work using data
from the German Socio-Economic Panel. It turns out the proposed algorithm deter-
mines a drift matrix whose the principle directions (eigenvectors) are qualitatively
equivalent to the ones estimated via ctsem, but the associated eigenvalues differ
substantially, leading to quantitatively different conclusions.

1 Introduction

Continuous time (CT) models are a well established concept to extract information
about the evolution of psychological processes from longitudinal data as it arises
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e.g. in long-term and large-scale panel studies ([5, 17, 22, 25]). The basic idea is
that the moods, feelings and, generally, the behavior of sentient beings evolve in a
continuous manner in time, so that a model which describes (a particular part of)
these traits should naturally also be of continuous-time form.With this point of view,
change and interaction occurs continuously, and data collection in studies is merely
an evaluation of the state of the traits under consideration at a given point in time. A
conceptual model is illustrated in Fig. 1. CT models are complemented by discrete
time (DT) models which are the “classical” viewpoint taken by many researchers
in the past, in which the temporal evolution of the traits is modeled to occur from
one time point to the next in a discrete manner. This represents the point of view of
change occurring when we measure it.

Fig. 1 Conceptual model. A continuous time perspective on a cross-lagged panel model. The
first three of the several time points for the two-process continuous time model are illustrated.
Occasions at which no observations are made are represented by latent variables (circles). The
processes influence one another continuously over time.

CT models offer a few practical advantages over DT models which are all related
to the fundamental difference of CT models being structurally independent of the
underlying time intervals used in data collection; for example, different lengths of
time intervals between panel evaluations are naturally incorporated into CT models
whereas for DT models, particular care has to be taken in order to not obtain
results which depend explicitly on the time intervals in data collection ([26]). This in
particular also concerns the case where data may bemissing for individuals at certain
collection time points ([20]). In this sense, CT models are ideally suited to handle
big and complex, imperfect data like panel data ([18]). Also, the study of dynamic
relationships between variables such as cross-lagged panel effects is easily possible
within the framework of CT models. Examining how cross-effects evolve and vary
as a function of the time interval between evaluations leads to a more dynamic view
on the underlying processes and avoids oversimplification ([6]). We do however not
go into a detailed comparison between CT and DT models here, but only refer to
e.g. [22, 25] and the references there for a comprehensive exposition.
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In fact, we rather take the CTmodeling approach for longitudinal data for granted,
but propose a different way of deriving and calculating the actual model parameters
which disposes of the connection to DT models nearly completely. Indeed, a most
common approach ([18,19,25]) to CTmodeling of panel data as we want to consider
goes via a Structural Equation Model (SEM) and the Exact Discrete Model (EDM),
although there of course also exist other approaches such as filter methods (e.g. [19].
In the SEM approach, one supposes that the underlying model is of continuous-
time and sets up a large SEM by relating the CT model at time evaluation points
with an associated DT model, the EDM. More precisely, if x represents the, say,
+-dimensional vector of quantities of interest, evolving over time, and C0, C1, C2, . . .
are the time points of data collection, then a linear DT model in state-space form
would be given by the difference equation

x(C8) = A(ΔC8)x(C8−1) + b(ΔC8) + w(ΔC8), (1)

where ΔC8 = C8 − C8−1 is the time interval between data collection time points, A(ΔC8)
is the +×V transition matrix from time point C8−1 to C8 , and b(ΔC8) and w(ΔC8) are
the +-dimensional intercept vector and random innovations depending on ΔC8 ([25,
eq. (13)]). The sought-for quantity here is A(ΔC8). The associated linear CT model
would be described by the continuous-time (stochastic) differential equation1

¤x(C) = �x(C) + 1 + � d, (C)
dC

(2)

with the time derivative ¤x, the drift matrix � (+ ×+), the continuous-time intercept
1 and a continuous-time error process (random walk, Wiener process) induced by
the + × + lower triangle matrix � ([25, (14)]). Relating the explicit solution to (2)
with the DT model (1), one obtains the EDM

x(C8) = 4�ΔC8x(C8−1) + �−1 [4�ΔC8 − �]1 + w(ΔC8),

with the matrix exponential 4�· and the + ×+ identity matrix � and the covariance

cov w(ΔC8) =
∫ C8

C8−1

4�(C8−B)��>4�
> (C8−B) dB.

In particular, we have A(ΔC8) = 4�ΔC8 which is the fundamental link between A and
the drift matrix � estimated in a CT model. The foregoing identities for x(C8) are
then used to set up a SEM whose parameters are highly nonlinear in the sought-for
quantities, most obviously �which ismodulated by thematrix exponential. The SEM
parameters are fitted to the given data by e.g. a maximum-likelihood estimator ([25,
p. 184]). Nowadays there are sophisticated packages which automatically take care

1 We stick with boldface notation x for the trajectories; otherwise, matrices and vectors related to
the DT model are written in boldface, too, whereas the corresponding quantities in the CT model
are in regular font.
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of all the mathematical setup such as ctsem ([7, 8]) for R. Still, the SEM approach
fundamentally links back to the discrete-time setup in the way it is set up and fitted.

We next propose a purely continuous-time, dynamical systems-type approach
to CT modeling. This conforms to the following point of view for CT models as
in [25, p. 179]:

One can also conceive of such a continuous time model as a dynamical system. At each point
in time, the system has a specific configuration, but time itself never acts as an explanatory
variable in the model. Instead, the model itself is an explanatory model. Arguably, this is
often a more realistic view of the world compared with models that include time explicitly
as a predictor (e.g., HLMs or LGMs). For example, when using an LGM to study learning,
we typically do not assume that time “causes” learning, although we mathematically model
it this way.

This is done in the next section. We follow up with a preliminary comparison
between the results obtained by ctsem and the proposed algorithm, respectively, for
a practical example relating satisfaction with health and satisfaction with work from
the German Socio-Economic Panel (SOEP, [27]).

2 Machine learning type approach to Continuous Time Modeling

We next describe a direct way of estimating the continuous-time matrix � in a
CT model given by (2) by a direct mathematical optimization problem in terms
of a variational problem. The idea follows the basic paradigm of continuous-time
modeling by assuming that the behaviour of a subject in the respective data set
follows a predetermined pattern over time whose properties can be captured by a
linear continuous-time differential equation such as (2) above. There will be no
reformulation in terms of the DT values in a SEM or the likes, but we use the way
how the individual subjects’ trajectories depend on � directly. This will prove to
work in a very direct and mathematically fully tractable manner.

To make the idea clear, we consider only the simplest version of (2) and do not
include intercepts or stochastic noise at first. We come back to these extensions later.
That is, the CT model is now given by

¤x(C) = �x(C). (3)

For the sake of exposition, we further explain the approach first for one individual
subject z. Say we have (: +1) evaluations of panel data I0, I1, . . . , I: for this subject
(vectors of a fixed length), each obtained at the respective times C0, C1, . . . , C: which
we assume to be in increasing order. The solution to the linear continuous-time
differential equation (3) for z starting from the initial value I0 at time C0 is given by
z(C) = 4�(C−C0) I0, using the matrix exponential function. We can imagine C ↦→ z(C)
as the trajectory of the initial starting point I0 induced by the linear differential
equation with matrix �. Thus, under the foregoing assumption, we would expect that
the panel data points I8 each lie on that trajectory, so I8 = z(C8) = 4�(C8−C0) I0 for every
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8. Of course, due to random factors, we cannot expect this equality to hold precisely,
but only in an approximating sense. From this point of view, we are looking for
a matrix � such that the discrepancy between the panel data I1, I2, . . . , I: and the
trajectory evaluations 4�(C1−C0) I0, 4

�(C2−C0) I0, . . . , 4
�(C:−C0) I0 is minimal, for instance

in a least-squares sense. That means that � should be a solution to the minimization
problem

min
�

:∑
8=1

4�(C8−C0) I0 − I8
2

2, (4)

where ‖ · ‖2 is the standard Euclidean norm. (We do not include 8 = 0 in the
minimization problem by construction: the trajectory C ↦→ I(C) always starts at
I0 at time C0.) In an optimal world without perturbations or random effects, we
could hope to be able to determine � exactly such that the foregoing minimization
problem (4) has an optimal value of 0. But in reality, there will be discrepancies
between I8 and the trajectory point z(C8) = 4�(C8−C0) I0. Moreover, (4) is a nonconvex
optimization problem such that we can only expect a local solution instead of a
global one. But still, generally, by (locally) solving (4), we determine � such that
the trajectory evaluations z(C1), z(C2), . . . , z(C: ) fit the observed data I1, I2, . . . , I:
in a (locally) best possible way with the given data. This is the basis of a variational
formulation of continuous-time modeling of cross-lagged panel data. From this
point of view, we do not require any implicit or explicit statistical assumptions about
probability distributions of random elements or perturbations in the given panel data.
Mathematically, this approach is similar to variational techniques in so-called data
assimilation [1].

Moreover, if we view this task as one of fitting values given by a model function,
here represented by the parameters in � (its coefficients) and solving the linear
differential equation (3), to a given set of measurements, then we can interpret this
approach exactly as a form of machine learning. Note that � only indirectly creates
the model values: we use it to obtain time-continuous trajectories in dependence on
�, which are then fitted to the observed data or measurements I1, I2, . . . , I: at the
time instants C8 .

The above description was given for one single subject. Next we formulate the
above mentioned apporach for a full panel set. Suppose that we have # total sub-
jects and for each subject, indexed by 9 , we have a number (: 9 + 1) data points
I
9

0, I
9

1, . . . , I
9

: 9
associated to time points C 90 , C

9

1 , . . . , C
9

: 9
which we again suppose to

be ordered in an increasing fashion for each 9 . (The time points of evaluation are
allowed to vary with each subject 9 .) Then the associated full minimization problem
becomes

min
�

#∑
9=1
l 9

: 9∑
8=1

z 9 (C 9
8
) − I 9

8

2
2 (5)

where each function z 9 is the solution to the time-continuous linear differential
equation (3) for z 9 with initial value I 90 at time C 90 , so z 9 (C 90) = I

9

0. We could specify
that this means that z 9 is given by
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z 9 (C) = 4�(C−C
9

0 ) I 90

and insert this formula in (5) to get the analogue to (4). It will however be convenient
for later considerations to retain the abstract description for I 9 as the solution to (3)
with initial value z 9 (C 90) = I

9

0. In the full formulation (5), we moreover have included
a weighting parameter l 9 ≥ 0 for each subject. This parameter could be used,
for example, to normalize each outer summand in (5) (indexed by 9) with respect
to the number of subject-specific data points : 9 , which we could do by choosing
l 9 = 1/: 9 for this case. However, for example it may also be reasonable to choose
these parameters l 9 as 1 for each 9 in which case a subject with a higher number
of data points would indirectly be considered more important to be well fitted than
subjects with a lower number of data points. (In principle, it would also be possible to
have a parameter l 9

8
for every individual data point. This could be used if extensive

prior knowledge about individual data points was available.)

Intercepts and trait variables. So far, the optimization approach to CT modeling
of cross-lagged panel data was described for the simplest case of the underlying
differential equation (3). It is also possible to include continuous-time intercepts 1
(possibly with a selector 1 = �D for subgroups of subjects) and continuous-time trait
variables ^ 9 (for each subject 9) in these considerations in a very straightforward way.
We refer to [17] for a comprehensive overview of these aspects. The modification
would be to keep the minimization problem (5), but now z 9 is defined to be the
solution to

¤x(C) = �x(C) + 1 + ^ 9 (6)

with initial value z(C 90) = I
9

0, and in addition to minimizing with respect to �

in (5), we also minimize with respect to 1 (or D in 1 = �D) and the collection
^1, ^2, . . . , ^# . Regarding the subgroup selectors 1 = �D, it would be interesting to
consider recursive partitioning techniques which were very recently also transferred
to continuous-time models [2]. We note that also equation (6) admits a unique
solution satisfying the given initial value, and there is an explicit formula (the
variation of constants or Duhamel formula) which we could use if so desired.

Stochastic differential equation formulation. It seems natural to include also a
stochastic error term as in the CT model (2) in the linear differential equations (3)
or (6), and then also to optimizewith respect to thematrix�. Then z̄ 9 is the solution to
the continuous-time stochastic differential equation (2) with initial value z̄(C 90) = I

9

0.
(We use the bar in z̄ 9 as a visual cue that z̄ 9 is supposed to be a solution to the
stochastic differential equation.) The trajectories z̄ 9 are now random variables since
they arise as solutions to a stochastic differential equation. Accordingly, we can not
optimize the trajectories directly but only stochastic indicators such as moments. We
choose the expected value, and the associated minimization problem then becomes

min
�,�

#∑
9=1
l 9

: 9∑
8=1
E
[z̄ 9 (C 9

8
) − I 9

8

2
2

]
. (7)
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However, since (2) is a linear stochastic differential equation, we know that the
relationship between the white noise induced by � and the solutions z̄ 9 is linear.
Using this and a few more properties of the Wiener process, when expanding the
square in (7), it turns out that (7) is equivalent to

min
�,�

#∑
9=1
l 9

: 9∑
8=1

[z 9 (C 9
8
) − I 9

8

2
2 +

∫ C
9

8

C
9

0

4�(C 98 −B)�2
Fr dB

]
, (8)

where each z 9 is again the solution to the deterministic (so, non-stochastic!) linear
differential equation (6) with initial value z(C 90) = I

9

0. Here, ‖·‖Fr denotes the Frobe-
nius norm of a matrix. We derive this in the appendix. But in (8), we see that any
optimal pair for the variables � and � will necessary be of the form ( �̄, 0), since �
only occurs in a sum of non-negative terms in the objective function to be minimized,
so it will always be optimal to choose � = 0. In this sense, we postulate that we can
always consider the deterministic problem setup (5), which is exactly the resulting
problem with � = 0, in order to determine the dynamics of the problem, that is, �
and possible trait vectors, without loss of generality. The situation would change if�
was given and fixed and thus not subject to minimization in (7), but it is not clear how
one would construct � from given data. Vice versa, given or having optimized for
the dynamics, we expect that one could devise a second-stage optimization problem
to estimate � or ��) = & from the data. We leave this for future work.

Measurement equation and error. There is also a straightforward extension of
the method described so far to also include a measurement equation and associated
measurement error. Then, we assume that the trajectories z 9 or z̄ 9 , respectively, are
in fact latent and we only directly observe a, say, linear function of them at the time
points C 9

8
, induced by a matrix �, with an error | 9

8
and an offset 3 9 :

H
9

8
= �z 9 (C 9

8
) + 3 9 + | 9

8
.

Then we would replace z 9 (C 9
8
) in (5) and (8) by H 9

8
. Since this is an affine-linear

function in z 9 (C 9
8
), thismodification gives rise to onlymarginalmathematical changes

in the approach. In particular, assuming that the expected value of the measurement
errors is zero, and that they are uncorrelated with respect to the random error in the
stochastic differential equation (2), the derivation of (8), and the conclusion that it
suffices to consider the deterministic counterpart of the respective formulation, stays
correct.

Particularities of this approach. The approach as laid out so far seems promising
to be very effective mainly due to three reasons.

First, minimizing (5) with respect to the drift matrix � will certainly involve
solving the differential equation (6) for each z 9 many times, at least as often as
the current value of the function to be minimized need be evaluated. For a large
number # of trajectories, this will amount to a huge amount of solves. On the other
hand, numerical methods for differential equations are extremely well researched
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and highly efficient solvers are ubiquitous in nearly every programming language
which we can make use of; in particular because, typically, the dimension + of the
state vectors will not be large at all.

Second, while (5) is highly nonlinear in the optimization variable �, the latter’s
number of variables +2 will rather be very low for standards in numerical optimiza-
tion. Similarly to the situation as for the differential equation, this allows to use the
full width of available theory for nonlinear optimization problems and associated
efficient solvers. If we include subject-specific trait variables, the number of opti-
mization variables increases quite drastically by + × #; however, while the overall
dynamics induced by � are coupled across all subjects, subject-specific traits only in-
fluence one particular trajectory, effectively leading to a certain decoupling between
optimization for each subject-specific trait. (For the same reason, we do not expect
problems regarding over-fitting, neither in this regard nor without subject-specific
traits, since then the number of degrees of freedom+2 is very small compared to the
number of subjects.)

Still, there is the caveat, that if we denote the function to be minimized in (5)—
the so-called objective function—by 5 (�), then we will require at least the gradient
∇ 5 (�) of 5 to use more efficient optimization algorithms. That is, we need to
understand and derive for which directions� (this is a matrix!) the objective function
5 will infinitesimally decrease when going from � towards � + �. This requires
either some more or less involved mathematics to derive an analytic expression for
the gradient∇ 5 (�), or usage of automatic differentiation tools, which are ubiquitous
nowadays, to derive the gradient automatically on a machine level. The latter could
however become a bottleneck in performance, such that the former is preferable in
general, if feasible. Having an explicit description of the gradient ∇ 5 (�) also allows
to optimize the efficiency with which it is calculated. Note that there are also results
on an explicit description of the gradients for the maximum likelihood estimation
which is done in ctsem [23], but it seems that these have been mostly superseded by
automatic differentiation tools these days. We also mention that the particular form
of the objective function to be minimized in (5) or (8), respectively, is susceptible
to so-called stochastic optimization algorithms such as the nowadays ever present
SGD, Stochastic Gradient Descent, which could provide further performance speed
ups.

Third, and most importantly, there is room for generalization. Indeed, the whole
approach does not at all rely on an explicit formula for the solution to the differential
equation (6). It is thus straightforward to generalize the whole approach to e.g.
time-dependent drift matrices �(C). Here, the amount of parameters to be optimized
would increase drastically; formally, it would be uncountable, but practically, it would
become +2 × (the amount of time steps used in a numerical discretization of the
differential equation).

Recently, regularization for continuous-time models, leading to sparsity in the
parameters, that is,less complex models, has been considered by Orzek, Arnold
and Völkle in [14, 15]. Extending the minimization problems (5) or (8) with such
regularizations is very natural and could be considered without further ado. (In the
present formulation such a regularization approach would only make sense with
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trait variables and intercepts, since the parameters in � are already few enough.)
This would require to use adapted optimization algorithms to actually solve the
optimization problems, but these are well researched and very efficient nowadays.
We refer to the references mentioned before.

Going even further, one could switch to nonlinear models of the form

¤x(C) = �\ (x(C))

with a nonlinear function parametrized by a vector of parameters \ such as for
example a Neural Network. In this case, a stochastic differential equation formulation
would also be much more difficult to handle. While such a generalization would not
at all be straightforward, it nevertheless seems very promising to investigate. We
leave this for future work.

Finally, for full disclosure, we point out again that the present approach is in-
herently deterministic so far. In particular, by design, there will be no confidence
intervals for the estimated parameters, andwe do not yet estimate the diffusionmatrix
&; only the actual dynamics induced by � will be estimated.

2.1 Empirical Example

Work, pressures, strains, and stresses within the workplace, which occupy most
people’s waking time have been identified as being a potentially important health
factor ([9, 11]). Numerous theories now exist, developed from a wide range of
perspectives, postulating a direct link between organisational/workplace stress and
personal well-being. Meta-analytic results show that an increase in work satisfaction
would be associatedwith improved health satisfaction. Furthermore, there is evidence
for a reciprocal effect from health satisfaction to job satisfaction ([9,11]). We tested
cross-lagged effects between satisfactionwith health and satisfactionwithwork using
Continuous Time Structural Equation Modeling (ctsem). While many questions
might be asked using this approach, the questions we will address here are the
following: What are the continuous temporal dynamics of satisfaction with health
and satisfaction with work? How much variation does there exist in such dynamics?
And, in particular, how do the results obtained using a ctsem approach compare with
those yielded by the above variational algorithm, and what are possible implications
for model fitting?

Sample In this example, we used data from the German Socio-Economic Panel
(SOEP, [27]), an ongoing survey of German households and persons which has been
conducted annually since 1984. More precisely, we chose the measurements from
1984 to 2021.

Measures We are interested in the association between satisfaction with health and
satisfaction with work. In the SOEP participants were asked to rate their satisfaction
with various aspects of their lives on a 11-point scale, ranging from 0 (totally
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Table 1 Continuous time parameter estimates: satisfaction with health and satisfaction with work

Satisfaction Health (OV) Satisfaction Work (OV)
Parameter Estimate [95% CI]0 Estimate [95% CI]0

Drift matrix (�)
Auto-effects -0.457∗ [-0.462; -0.452] -0.578∗ [-0.583; -0.572]
Cross-effects 0.262∗ [0.258; 0.267] 0.376∗ [0.371; 0.382]

Diffusion matrix (&)
@ 4.105∗ [4.082; 4.129] 5.399∗ [5.367; 5.432]
@� = @( 0.388∗ [0.384; 0.408]

Baseline (C0)
"C0 2.468∗ [2.453; 2.484] 2.307∗ [2.29; 2.324]
varC0 4.42∗ [4.375; 4.467] 5.272∗ [5.218; 5.328]
covC0 1.462 ∗ [1.425; 1.5]

Model indices
-2LL 3496829
degrees of freedom 2837

0 Confidence intervals for many parameters in CT models may not be symmetric around the point
estimate.
∗ ? < 0.05.
Note: Continuous time parameter estimates for auto-effects are always negative, but correspond to
positive effects in discrete time.

unhappy) to 10 (totally happy). The question in this regard is as follows: “How
satisfied are you today with the following areas of your life?” The chosen items are
“With your health” and “With your work”.

Model We used two different approaches to obtain a model for the foregoing aspects
in the given data.

First, we fitted a SEM-based continuous time (CT) cross-lagged panel model
([6, 7, 25, 26]) to our data. We fit the model using the open-source software R
(version 4.2.2; [21]) and the package ctsem (version 3.7.2, [7, 8], which interfaces
to OpenMx ([13]) via ctsemOMX (version 1.0.4). The precise setup of the model in R
can be found in the appendix.

Second, we used the variational approach to Continuous TimeModeling as it was
explained before. The code used to generate the results was written from scratch in
python and can be found on github [10].

Since this is a first glimpse and a trial run for the variational type approach
to continuous-time modeling, we do not consider time-continuous intercepts or
individual traits in the empirical example.
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2.2 Results

ctsem: The results of the continuous time models estimated by ctsem are sum-
marized in Table 1. Estimates of the auto- and cross-effects for both processes are
displayed in the drift matrix which resulted to

�ctsem =

(
−0.457024 0.262225

0.376226 −0.5775

)
.

The time-continuous auto-effects on the diagonal of the drift matrix reflect the
processes’ temporal stability; negative values for auto-effects are expected in the
continuous time approach. Looking at the derived auto-effects, so the diagonal
entries of the matrix Actsem (ΔC) = 4�ctsemΔC for 0 < ΔC < 37 years (see Fig. 2),
the average within-person stability of satisfaction with health for a discrete time
interval of 1 year (ΔC = 1) was 0.66. As expected, stability coefficients decreased
with increasing time. The stability of satisfaction with work was lower with 0.59 for
a discrete time interval of 1 year (ΔC = 1) and asymptotically approaches zero with
increasing time. Of primary interest for our research question are the cross-effects of
the drift matrix, which reflect the inter-relatedness of the processes (e.g., an increase
in - leads to a decrease/increase in. ).We analyse the significance of the effects using
95% likelihood-based confidence intervals. The drift coefficients make it possible
to estimate the auto-regressive and cross-effects for any chosen time interval ΔC
between 0 and 37 years. In order to predict the relationships between variables over a
given time period, the continuous time parameters are used to calculate the discrete
time parameters [6]. The cross-effects, so the non-diagonal entries of Actsem (ΔC) =
4�ctsemΔC as a function of the time interval between observations (0 < ΔC < 37 years)
are shown in Fig. 3. Regarding the relationship between satisfaction with health and
satisfaction with work we found that both the positive effect of satisfaction with
health on satisfaction with work (coef. = 0.24 for ΔC = 1 year) and the positive
effect of satisfaction with work on satisfaction with health (coef. = 0.16 for ΔC = 1
year) reach their respective maxima at a time length between two and three years
and decreases for longer times, although the maximum is decisively smaller than for
the positive effect of satisfaction with health on satisfaction with work. (Indeed the
maxima must occur at the same time for mathematical reasons related to the matrix
exponential.)

Variational approach We next present results for the SOEP panel data with regards
to the relationship between satisfaction with health and satisfaction with work, as
described earlier.

Before we present the actual results, a fewwords on the computations andmethod-
ology. We have used the normalization l 9 = 1/: 9 . The minimization was solved
by a Quasilinear Newton Method (BFGS) which was supplied with the objective
function to be minimized as in (5) and its gradient with respect to the parameters
in �. The code for these calculations was written in Python whose SciPy package
offers the aforementioned BFGS optimization method. For the initialization of �,
we used the matrix which was obtained from ctsem as in Table 1.
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Fig. 2 Auto-effects derived from the continuous time model for satisfaction with health and satis-
faction with work. The plot shows the auto-effects on the diagonal of Actsem (ΔC) as a function of a
time interval 0 < ΔC < 37 years. The stability of satisfaction with health (blue) and the stability of
satisfaction with work (orange).

The two-dimensional data points were set up such that the first variable corre-
sponds to “satisfaction with health” and, accordingly, the second one corresponds to
“satisfaction with work”. Then the optimization result, so thematrix �minimizing—
at least locally—problem (5) was found to be

�learn =

(
−0.258455 0.220716

0.386343 −0.49353

)
.

Let us note that, in order to validate our expectation that the possible phenomenon
of over-fitting should not occur due to the low number +2 = 4 of degrees of freedom
in this example, the algorithm was run several times with a reduced data set, where
only 50% or 25% of the participants in the SOEP study were chosen randomly and
used to optimize for �learn, and the resulting matrix �learn was indeed stable.

Looking at the matrix values for the discrete-time drift matrix as derived from
the continuous-time one, Alearn (ΔC) = 4�learnΔC as depicted in Figures 4 (auto-effects)
and 5 (cross-effects), we find the expected behavior decreasing values for the auto-
effects. The average within-person stability of satisfaction with health for a discrete
time interval of 1 year (ΔC = 1) was 0.8, whereas the stability of satisfaction with
work was lower with 0.63 for the same discrete time interval. The cross-effects again
exhibit a maximum after which they decline, however, this time the maximum occurs
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Fig. 3 Cross-effects derived from the continuous time model for satisfaction with health and
satisfactionwithwork. The plot shows the cross-lagged parameters on the off-diagonal ofActsem (ΔC)
as a function of a time interval of 0 < ΔC < 37 years. Satisfaction with health predicting subsequent
changes in satisfactionwith work (blue) and changes in satisfactionwith work predicting subsequent
changes in satisfaction with health (orange).

at about ΔC = 4 years. Again, the positive influence of satisfaction with health on
satisfaction with a coefficient of 0.27 at ΔC = 1 year is more substantial than the
reverse one with a coefficient of 0.15 at ΔC = 1 year, as seen in the graphs.

2.3 Discussion

We next compare the different results �ctsem and �learn for the time-continuous drift
matrices and associated consequences for the time-discrete drift matrices Actsem and
Alearn.

Firstly, we remark that if 5 denotes the function to be minimized in the opti-
mization problem (5), then 5 (�learn) is 12% less (so: better) than 5 (�ctsem) which
is a substantial but not completely outrageous difference. Note that �ctsem was the
starting point for the numerical optimization algorithm used to solve the minimiza-
tion problem (5) and the algorithm moved away to find �learn, so �ctsem is not a
local minimum for (5). Thus, �ctsem is a reasonable first approximation of a matrix
minimizing (5), but not an actual optimal solution. Of course this comparison is a
bit unfair since ctsem actually estimates—read: optimizes for—more parameters, in
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Fig. 4 Auto-effects derived from the continuous timemodel for satisfactionwith health and satisfac-
tion with work via the machine-learning approach. The plot shows the auto-effects on the diagonal
of Alearn (ΔC) as a function of a time interval 0 < ΔC < 37 years. The stability of satisfaction with
health (blue) and the stability of satisfaction with work (orange).

particular the diffusionmatrix& = ��) . However, if our main interest is in finding a
matrix � such that the present panel data is best described by the dynamics induced
by the associated linear differential equation, then it makes sense to compare the
performances of �learn, so �ctsem only with regard to the optimization problem (5).

Comparing the actual parameters in �ctsem and �learn, we observe that the non-
diagonal entries in each matrix are reasonably well matched, whereas the diagonal
entries differ more substantially. However, the qualitative properties of a matrix � are
better represented by its spectral properties, so its eigenvalues _(�) and eigenvectors
{(�). Here we find (rounded and ordered)

_(�ctsem) = (−0.19,−0.84), {(�ctsem) =
((

0.71
0.7

)
,

(
−0.57

0.82

))
and

_(�learn) = (−0.06,−0.69), {(�learn) =
((

0.74
0.67

)
,

(
−0.45

0.89

))
.

While the eigenvalues are again rather different, it becomes apparent that the eigen-
vectors, so the principal directions of either � along which the solution to the
differential equation (3) will evolve, are well matched. We can also observe that in
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Fig. 5 Cross-effects derived from the continuous time model for satisfaction with health and satis-
faction with work via the machine-learning approach. The plot shows the cross-lagged parameters
on the off-diagonal of Alearn (ΔC) as a function of a time interval of 0 < ΔC < 37 years. Satis-
faction with health predicting subsequent changes in satisfaction with work (blue) and changes in
satisfaction with work predicting subsequent changes in satisfaction with health (orange).

Fig. 6 where the trajectories of a few randomly selected individuals in the panel study
under the linear differential equation (3) are shown for � = �ctsem and � = �learn,
respectively. For � = �ctsem, the dashed red lines indicate the eigenvectors {(�ctsem)
scaled by their respective (inverted) eigenvalue to show how the trajectory evolution
aligns with the eigenvectors, making them a most important quantity of interest in
this context.

With respect to the questions of study for the SOEP data, so the influence of
satisfaction with health on satisfaction with work and vice versa, we again refer to
Figures 2–5. It is apparent that the decay in the auto-effects as ΔC increases is much
slower for Alearn (ΔC) than in Actsem (ΔC); the mathematical reason behind this is that
the eigenvalues _(�learn) of �learn are less negative than those of �ctsem in _(�ctsem).
This means that the eigenvalues _(Alearn (ΔC = 1)) = 4_(�learn) of Alearn (ΔC = 1) are
closer to 1 than those of Actsem. On the other hand, the cross-effects exhibit quite
similar behavior for both results, with the respective peaks being a bit higher and
also for larger values of Δ for �learn or Alearn (ΔC), respectively, obtained from the
learning approach.

We conclude that qualitatively, the results �ctsem and �learn of the different ap-
proaches agree, while quantitatively, they yield different conclusions.
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Fig. 6 Trajectories of a few randomly selected individuals in the panel study under the linear
differential equation (3) for � = �ctsem (left) and � = �learn (right). For � = �ctsem, the dashed red
lines indicate the eigenvectors { (�ctsem) scaled by their respective inverted eigenvalue.

Appendix

ctsem settings

The following R snippet was used to perform the ctsem model estimation:

Program Code

data <- read.csv("soep_panel_file.csv")

data_selection <- data.frame(
data$pid,
data$syear,
data$plh0171,
data$plh0173

)

names(data_selection) <- c("pid","syear","hsat","wsat")

library("ctsem")
library("ctsemOMX")

wide <- ctLongToWide(
datalong = data_selection,
id = "pid",
time = "syear",
manifestNames = c("hsat", "wsat")

)

wide_int <- ctIntervalise(
datawide = wide,
Tpoints = 37,
n.manifest = 2,
manifestNames = c("hsat", "wsat"),
individualRelativeTime = TRUE,
imputedefs = FALSE

)

model <- ctModel(
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type = ’omx’,
n.latent = 2,
n.manifest = 2,
Tpoints = 37,
manifestNames = c("hsat", "wsat"),
latentNames = c("hsat", "wsat"),
LAMBDA = diag(2),
MANIFESTMEANS = matrix(data=0, nrow=2, ncol=1),
MANIFESTVAR = matrix(data=0, nrow=2, ncol=2),
DRIFT ="auto",
CINT = matrix(data=0, byrow=T, nrow=2, ncol=1),
DIFFUSION = "auto",
TRAITVAR = NULL,
T0TRAITEFFECT = NULL,
MANIFESTTRAITVAR = NULL,
startValues = NULL

)

set.seed(1)

model_fit <- ctFit(
dat = wide_int,
ctmodelobj = model,
transformedParams = T

)

summary(model_fit, verbose=T)

Reformulation of the variational stochastic approach

Let x̄(C) be the solution to the linear stochastic differential equation (2) with initial
value x̄(C0) = G0. Then x̄(C) is given by ([3, Cor. 8.2.4])

x̄(C) = 4�(C−C0)G0 +
∫ C

C0

4�(C−B)1 dB +
∫ C

C0

4�(C−B)� d, (B). (9)

Set further
x(C) = 4�(C−C0)G0 +

∫ C

C0

4�(C−B)1 dB,

which is the solution to the non-stochastic linear differential equation (6) with initial
value x(C0) = G0 and with ^ 9 = 0, and let some time ) > C0 and datum G) be given.
Then, expanding the square,

x̄()) − G) 2
2 =

x()) − G) 2
2 + 2

(
x()) − G) ,

∫ )

C0

4�() −B)� d, (B)
)

+
∫ )

C0

4�() −B)� d, (B)
2

2

,
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where in the second term on the right, we mean the inner product. We next consider
the expectation of the foregoing equation. From [3, Thm. 4.4.14], the expectation of
the stochastic Itô integral in (9) is zero, that is,

E

[∫ )

C0

4�() −B)� d, (B)
]
= 0,

and we have the Itô isometry

E

∫ )

C0

4�() −B)� d, (B)
2

2

=

∫ )

C0

E
4�() −B)�2

Fr dB =
∫ )

C0

4�() −B)�2
Fr dB.

Accordingly,

E
x̄()) − G) 2

2 =
x()) − G) 2

2 +
∫ )

C0

4�() −B)�2
Fr dB.

Every summand in (7) is precisely of the foregoing form, so the last identity yields (8).
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